Interpretable Parkinson's Disease Detection Using Group-Wise Scaling

Uloženo v:
Podrobná bibliografie
Název: Interpretable Parkinson's Disease Detection Using Group-Wise Scaling
Autoři: Momeni, Niloofar, Whitling, Susanna, Jakobsson, Andreas
Přispěvatelé: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator
Zdroj: IEEE Access. 13:29147-29161
Témata: Natural Sciences, Computer and Information Sciences, Other Computer and Information Science, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Annan data- och informationsvetenskap, Mathematical Sciences, Probability Theory and Statistics, Matematik, Sannolikhetsteori och statistik
Popis: This study is aimed at detecting Parkinson's disease by analyzing voice measurements made using a mobile phone. The key objectives include creating a model that ensures accurate predictions while maintaining interpretability, consistent with the existing literature on Parkinson's disease. We introduce a novel group-wise scaling method to address typical age and biological sex biases in the datasets, demonstrating 9.5% improvement over conventional scaling for three publicly available data sets. We also show the importance of evaluating the developed model on unseen individuals to achieve reliable classification results. The developed model is shown to offer an accuracy of 82% for unseen individuals, surpassing current state-of-the-art approaches. Furthermore, we offer insights into the decision-making of the model using Shapley additive explanation values. Our analysis reveals that shorter and less variable voiced segments and more variable unvoiced segments, suggesting a monotone voice pattern with frequent pauses, increase the likelihood of classifying the voice as a Parkinson's disease voice. Additionally, greater variability and rate of voiced segments, low variability of unvoiced segments, higher pitch variation, and spectral flux, suggesting continuous phonation and dynamic modulation, correlate with healthy voices. These features align well with the relevant medical literature, confirming our results. The significance of our proposed model lies in its generalizability and reliability for Parkinson's disease detection, potentially decelerating disease progression, reducing healthcare costs, and improving quality of life for patients.
Přístupová URL adresa: https://doi.org/10.1109/ACCESS.2025.3540600
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1109/ACCESS.2025.3540600#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21693536&ISBN=&volume=13&issue=&date=20250101&spage=29147&pages=29147-29161&title=IEEE Access&atitle=Interpretable%20Parkinson%27s%20Disease%20Detection%20Using%20Group-Wise%20Scaling&aulast=Momeni%2C%20Niloofar&id=DOI:10.1109/ACCESS.2025.3540600
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Momeni%20N
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.dc4a5f85.8458.42fe.93ce.1e43b6b2d877
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Interpretable Parkinson's Disease Detection Using Group-Wise Scaling
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Momeni%2C+Niloofar%22">Momeni, Niloofar</searchLink><br /><searchLink fieldCode="AR" term="%22Whitling%2C+Susanna%22">Whitling, Susanna</searchLink><br /><searchLink fieldCode="AR" term="%22Jakobsson%2C+Andreas%22">Jakobsson, Andreas</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator<br />Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>IEEE Access</i>. 13:29147-29161
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Other+Computer+and+Information+Science%22">Other Computer and Information Science</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Annan+data-+och+informationsvetenskap%22">Annan data- och informationsvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Probability+Theory+and+Statistics%22">Probability Theory and Statistics</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Sannolikhetsteori+och+statistik%22">Sannolikhetsteori och statistik</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This study is aimed at detecting Parkinson's disease by analyzing voice measurements made using a mobile phone. The key objectives include creating a model that ensures accurate predictions while maintaining interpretability, consistent with the existing literature on Parkinson's disease. We introduce a novel group-wise scaling method to address typical age and biological sex biases in the datasets, demonstrating 9.5% improvement over conventional scaling for three publicly available data sets. We also show the importance of evaluating the developed model on unseen individuals to achieve reliable classification results. The developed model is shown to offer an accuracy of 82% for unseen individuals, surpassing current state-of-the-art approaches. Furthermore, we offer insights into the decision-making of the model using Shapley additive explanation values. Our analysis reveals that shorter and less variable voiced segments and more variable unvoiced segments, suggesting a monotone voice pattern with frequent pauses, increase the likelihood of classifying the voice as a Parkinson's disease voice. Additionally, greater variability and rate of voiced segments, low variability of unvoiced segments, higher pitch variation, and spectral flux, suggesting continuous phonation and dynamic modulation, correlate with healthy voices. These features align well with the relevant medical literature, confirming our results. The significance of our proposed model lies in its generalizability and reliability for Parkinson's disease detection, potentially decelerating disease progression, reducing healthcare costs, and improving quality of life for patients.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/ACCESS.2025.3540600" linkWindow="_blank">https://doi.org/10.1109/ACCESS.2025.3540600</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.dc4a5f85.8458.42fe.93ce.1e43b6b2d877
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/ACCESS.2025.3540600
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 29147
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Other Computer and Information Science
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Annan data- och informationsvetenskap
        Type: general
      – SubjectFull: Mathematical Sciences
        Type: general
      – SubjectFull: Probability Theory and Statistics
        Type: general
      – SubjectFull: Matematik
        Type: general
      – SubjectFull: Sannolikhetsteori och statistik
        Type: general
    Titles:
      – TitleFull: Interpretable Parkinson's Disease Detection Using Group-Wise Scaling
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Momeni, Niloofar
      – PersonEntity:
          Name:
            NameFull: Whitling, Susanna
      – PersonEntity:
          Name:
            NameFull: Jakobsson, Andreas
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 21693536
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 13
          Titles:
            – TitleFull: IEEE Access
              Type: main
ResultId 1