Interpretable Parkinson's Disease Detection Using Group-Wise Scaling
Uloženo v:
| Název: | Interpretable Parkinson's Disease Detection Using Group-Wise Scaling |
|---|---|
| Autoři: | Momeni, Niloofar, Whitling, Susanna, Jakobsson, Andreas |
| Přispěvatelé: | Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator |
| Zdroj: | IEEE Access. 13:29147-29161 |
| Témata: | Natural Sciences, Computer and Information Sciences, Other Computer and Information Science, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Annan data- och informationsvetenskap, Mathematical Sciences, Probability Theory and Statistics, Matematik, Sannolikhetsteori och statistik |
| Popis: | This study is aimed at detecting Parkinson's disease by analyzing voice measurements made using a mobile phone. The key objectives include creating a model that ensures accurate predictions while maintaining interpretability, consistent with the existing literature on Parkinson's disease. We introduce a novel group-wise scaling method to address typical age and biological sex biases in the datasets, demonstrating 9.5% improvement over conventional scaling for three publicly available data sets. We also show the importance of evaluating the developed model on unseen individuals to achieve reliable classification results. The developed model is shown to offer an accuracy of 82% for unseen individuals, surpassing current state-of-the-art approaches. Furthermore, we offer insights into the decision-making of the model using Shapley additive explanation values. Our analysis reveals that shorter and less variable voiced segments and more variable unvoiced segments, suggesting a monotone voice pattern with frequent pauses, increase the likelihood of classifying the voice as a Parkinson's disease voice. Additionally, greater variability and rate of voiced segments, low variability of unvoiced segments, higher pitch variation, and spectral flux, suggesting continuous phonation and dynamic modulation, correlate with healthy voices. These features align well with the relevant medical literature, confirming our results. The significance of our proposed model lies in its generalizability and reliability for Parkinson's disease detection, potentially decelerating disease progression, reducing healthcare costs, and improving quality of life for patients. |
| Přístupová URL adresa: | https://doi.org/10.1109/ACCESS.2025.3540600 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1109/ACCESS.2025.3540600# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21693536&ISBN=&volume=13&issue=&date=20250101&spage=29147&pages=29147-29161&title=IEEE Access&atitle=Interpretable%20Parkinson%27s%20Disease%20Detection%20Using%20Group-Wise%20Scaling&aulast=Momeni%2C%20Niloofar&id=DOI:10.1109/ACCESS.2025.3540600 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Momeni%20N Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.dc4a5f85.8458.42fe.93ce.1e43b6b2d877 RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Interpretable Parkinson's Disease Detection Using Group-Wise Scaling – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Momeni%2C+Niloofar%22">Momeni, Niloofar</searchLink><br /><searchLink fieldCode="AR" term="%22Whitling%2C+Susanna%22">Whitling, Susanna</searchLink><br /><searchLink fieldCode="AR" term="%22Jakobsson%2C+Andreas%22">Jakobsson, Andreas</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator<br />Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Access</i>. 13:29147-29161 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Other+Computer+and+Information+Science%22">Other Computer and Information Science</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Annan+data-+och+informationsvetenskap%22">Annan data- och informationsvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Probability+Theory+and+Statistics%22">Probability Theory and Statistics</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Sannolikhetsteori+och+statistik%22">Sannolikhetsteori och statistik</searchLink> – Name: Abstract Label: Description Group: Ab Data: This study is aimed at detecting Parkinson's disease by analyzing voice measurements made using a mobile phone. The key objectives include creating a model that ensures accurate predictions while maintaining interpretability, consistent with the existing literature on Parkinson's disease. We introduce a novel group-wise scaling method to address typical age and biological sex biases in the datasets, demonstrating 9.5% improvement over conventional scaling for three publicly available data sets. We also show the importance of evaluating the developed model on unseen individuals to achieve reliable classification results. The developed model is shown to offer an accuracy of 82% for unseen individuals, surpassing current state-of-the-art approaches. Furthermore, we offer insights into the decision-making of the model using Shapley additive explanation values. Our analysis reveals that shorter and less variable voiced segments and more variable unvoiced segments, suggesting a monotone voice pattern with frequent pauses, increase the likelihood of classifying the voice as a Parkinson's disease voice. Additionally, greater variability and rate of voiced segments, low variability of unvoiced segments, higher pitch variation, and spectral flux, suggesting continuous phonation and dynamic modulation, correlate with healthy voices. These features align well with the relevant medical literature, confirming our results. The significance of our proposed model lies in its generalizability and reliability for Parkinson's disease detection, potentially decelerating disease progression, reducing healthcare costs, and improving quality of life for patients. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/ACCESS.2025.3540600" linkWindow="_blank">https://doi.org/10.1109/ACCESS.2025.3540600</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.dc4a5f85.8458.42fe.93ce.1e43b6b2d877 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/ACCESS.2025.3540600 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 15 StartPage: 29147 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Other Computer and Information Science Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Annan data- och informationsvetenskap Type: general – SubjectFull: Mathematical Sciences Type: general – SubjectFull: Probability Theory and Statistics Type: general – SubjectFull: Matematik Type: general – SubjectFull: Sannolikhetsteori och statistik Type: general Titles: – TitleFull: Interpretable Parkinson's Disease Detection Using Group-Wise Scaling Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Momeni, Niloofar – PersonEntity: Name: NameFull: Whitling, Susanna – PersonEntity: Name: NameFull: Jakobsson, Andreas – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, The voice group, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Röstgruppen, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section IV, Logopedics, Phoniatrics and Audiology, Communication and Cognition, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion IV, Logopedi, foniatri och audiologi, Kommunikation och kognition, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Statistical Signal Processing Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, -lup-obsolete, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 21693536 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 13 Titles: – TitleFull: IEEE Access Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science