Enhancing Pan evaporation predictions: Accuracy and uncertainty in hybrid machine learning models
Uloženo v:
| Název: | Enhancing Pan evaporation predictions: Accuracy and uncertainty in hybrid machine learning models |
|---|---|
| Autoři: | Khosravi, Khabat, Farooque, Aitazaz A., Naghibi, Amir, Heddam, Salim, Sharafati, Ahmad, Hatamiafkoueieh, Javad, Abolfathi, Soroush |
| Přispěvatelé: | Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator, Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator |
| Zdroj: | Ecological Informatics. 85 |
| Témata: | Engineering and Technology, Civil Engineering, Geotechnical Engineering and Engineering Geology, Teknik, Samhällsbyggnadsteknik, Geoteknik och teknisk geologi |
| Popis: | Pan Evaporation (Ep) plays a pivotal role in water resource management, particularly in arid and semi-arid regions. This study assesses the predictive performance of a comprehensive range of advanced machine learning (ML) and deep learning (DL) algorithms for Ep prediction using readily available environmental sensing data. The models investigated include M5 Prime (M5P), M5Rule (M5R), Kstar, as well as their hybridized versions employing Bagging (BA), the adaptive neuro-fuzzy inference system (ANFIS), ANFIS-GA (genetic algorithm), and long short-term memory (LSTM) networks. A 30-year dataset of monthly meteorological observations (1988–2018) from the Kermanshah synoptic station in Iran served as the basis for this analysis, incorporating variables such as temperature, relative humidity, solar exposure, wind speed, and rainfall. Eight input scenarios were developed using both manual and automated feature selection techniques, including correlation-based subset selection evaluation (CfsSubsetEval or CSE), Principal Component Analysis (PCA), and the Relief Attribute Evaluator (RAE). The results demonstrate that the BA-Kstar ensemble model achieved superior performance (R2 = 0.91, RMSE = 1.60, NSE = 0.91, and RSR = 0.30). Notably, manually constructed input scenarios outperformed automated feature selection methods, with maximum temperature emerging as the most significant predictor of Ep variability. This study underscores the reliability and efficacy of hybrid ML models for Ep forecasting, with significant implications for their broader application in diverse climates and geographical regions. |
| Přístupová URL adresa: | https://doi.org/10.1016/j.ecoinf.2024.102933 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1016/j.ecoinf.2024.102933# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=15749541&ISBN=&volume=85&issue=&date=20250101&spage=&pages=&title=Ecological Informatics&atitle=Enhancing%20Pan%20evaporation%20predictions%3A%20Accuracy%20and%20uncertainty%20in%20hybrid%20machine%20learning%20models&aulast=Khosravi%2C%20Khabat&id=DOI:10.1016/j.ecoinf.2024.102933 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Khosravi%20K Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.cb0443a8.e379.4ee0.a64d.f65bf9d563f5 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Enhancing Pan evaporation predictions: Accuracy and uncertainty in hybrid machine learning models – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Khosravi%2C+Khabat%22">Khosravi, Khabat</searchLink><br /><searchLink fieldCode="AR" term="%22Farooque%2C+Aitazaz+A%2E%22">Farooque, Aitazaz A.</searchLink><br /><searchLink fieldCode="AR" term="%22Naghibi%2C+Amir%22">Naghibi, Amir</searchLink><br /><searchLink fieldCode="AR" term="%22Heddam%2C+Salim%22">Heddam, Salim</searchLink><br /><searchLink fieldCode="AR" term="%22Sharafati%2C+Ahmad%22">Sharafati, Ahmad</searchLink><br /><searchLink fieldCode="AR" term="%22Hatamiafkoueieh%2C+Javad%22">Hatamiafkoueieh, Javad</searchLink><br /><searchLink fieldCode="AR" term="%22Abolfathi%2C+Soroush%22">Abolfathi, Soroush</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator<br />Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Ecological Informatics</i>. 85 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Civil+Engineering%22">Civil Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Geotechnical+Engineering+and+Engineering+Geology%22">Geotechnical Engineering and Engineering Geology</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Samhällsbyggnadsteknik%22">Samhällsbyggnadsteknik</searchLink><br /><searchLink fieldCode="DE" term="%22Geoteknik+och+teknisk+geologi%22">Geoteknik och teknisk geologi</searchLink> – Name: Abstract Label: Description Group: Ab Data: Pan Evaporation (Ep) plays a pivotal role in water resource management, particularly in arid and semi-arid regions. This study assesses the predictive performance of a comprehensive range of advanced machine learning (ML) and deep learning (DL) algorithms for Ep prediction using readily available environmental sensing data. The models investigated include M5 Prime (M5P), M5Rule (M5R), Kstar, as well as their hybridized versions employing Bagging (BA), the adaptive neuro-fuzzy inference system (ANFIS), ANFIS-GA (genetic algorithm), and long short-term memory (LSTM) networks. A 30-year dataset of monthly meteorological observations (1988–2018) from the Kermanshah synoptic station in Iran served as the basis for this analysis, incorporating variables such as temperature, relative humidity, solar exposure, wind speed, and rainfall. Eight input scenarios were developed using both manual and automated feature selection techniques, including correlation-based subset selection evaluation (CfsSubsetEval or CSE), Principal Component Analysis (PCA), and the Relief Attribute Evaluator (RAE). The results demonstrate that the BA-Kstar ensemble model achieved superior performance (R2 = 0.91, RMSE = 1.60, NSE = 0.91, and RSR = 0.30). Notably, manually constructed input scenarios outperformed automated feature selection methods, with maximum temperature emerging as the most significant predictor of Ep variability. This study underscores the reliability and efficacy of hybrid ML models for Ep forecasting, with significant implications for their broader application in diverse climates and geographical regions. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1016/j.ecoinf.2024.102933" linkWindow="_blank">https://doi.org/10.1016/j.ecoinf.2024.102933</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.cb0443a8.e379.4ee0.a64d.f65bf9d563f5 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.ecoinf.2024.102933 Languages: – Text: English Subjects: – SubjectFull: Engineering and Technology Type: general – SubjectFull: Civil Engineering Type: general – SubjectFull: Geotechnical Engineering and Engineering Geology Type: general – SubjectFull: Teknik Type: general – SubjectFull: Samhällsbyggnadsteknik Type: general – SubjectFull: Geoteknik och teknisk geologi Type: general Titles: – TitleFull: Enhancing Pan evaporation predictions: Accuracy and uncertainty in hybrid machine learning models Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Khosravi, Khabat – PersonEntity: Name: NameFull: Farooque, Aitazaz A. – PersonEntity: Name: NameFull: Naghibi, Amir – PersonEntity: Name: NameFull: Heddam, Salim – PersonEntity: Name: NameFull: Sharafati, Ahmad – PersonEntity: Name: NameFull: Hatamiafkoueieh, Javad – PersonEntity: Name: NameFull: Abolfathi, Soroush – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 15749541 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 85 Titles: – TitleFull: Ecological Informatics Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science