The averaging process on infinite graphs

Uloženo v:
Podrobná bibliografie
Název: The averaging process on infinite graphs
Autoři: Gantert, Nina, Vilkas, Timo
Přispěvatelé: Lund University, Lund University School of Economics and Management, LUSEM, Department of Statistics, Lunds universitet, Ekonomihögskolan, Statistiska institutionen, Originator
Zdroj: Alea. 22:815-823
Témata: Natural Sciences, Mathematical Sciences, Probability Theory and Statistics, Naturvetenskap, Matematik, Sannolikhetsteori och statistik
Popis: We consider the averaging process on an infinite connected graph with bounded degree and independent, identically distributed starting values or initial opinions. Assuming that the law of the initial opinion of a vertex has a finite second moment, we show that the opinions of all vertices converge in L2 to the first moment of the law of the initial opinions. A key tool in the proof is the Sharing a drink procedure introduced by Olle Häggström.
Přístupová URL adresa: https://doi.org/10.30757/ALEA.v22-32
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.30757/ALEA.v22-32#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=19800436&ISBN=&volume=22&issue=&date=20250101&spage=815&pages=815-823&title=Alea&atitle=The%20averaging%20process%20on%20infinite%20graphs&aulast=Gantert%2C%20Nina&id=DOI:10.30757/ALEA.v22-32
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Gantert%20N
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.a24c5b04.6dc3.47cd.9150.5234c1b5edbc
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: The averaging process on infinite graphs
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Gantert%2C+Nina%22">Gantert, Nina</searchLink><br /><searchLink fieldCode="AR" term="%22Vilkas%2C+Timo%22">Vilkas, Timo</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Lund University School of Economics and Management, LUSEM, Department of Statistics, Lunds universitet, Ekonomihögskolan, Statistiska institutionen, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Alea</i>. 22:815-823
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Probability+Theory+and+Statistics%22">Probability Theory and Statistics</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Sannolikhetsteori+och+statistik%22">Sannolikhetsteori och statistik</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We consider the averaging process on an infinite connected graph with bounded degree and independent, identically distributed starting values or initial opinions. Assuming that the law of the initial opinion of a vertex has a finite second moment, we show that the opinions of all vertices converge in L2 to the first moment of the law of the initial opinions. A key tool in the proof is the Sharing a drink procedure introduced by Olle Häggström.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.30757/ALEA.v22-32" linkWindow="_blank">https://doi.org/10.30757/ALEA.v22-32</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.a24c5b04.6dc3.47cd.9150.5234c1b5edbc
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.30757/ALEA.v22-32
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 9
        StartPage: 815
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Mathematical Sciences
        Type: general
      – SubjectFull: Probability Theory and Statistics
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Matematik
        Type: general
      – SubjectFull: Sannolikhetsteori och statistik
        Type: general
    Titles:
      – TitleFull: The averaging process on infinite graphs
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Gantert, Nina
      – PersonEntity:
          Name:
            NameFull: Vilkas, Timo
      – PersonEntity:
          Name:
            NameFull: Lund University, Lund University School of Economics and Management, LUSEM, Department of Statistics, Lunds universitet, Ekonomihögskolan, Statistiska institutionen, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 19800436
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 22
          Titles:
            – TitleFull: Alea
              Type: main
ResultId 1