Podrobná bibliografie
| Název: |
Transience of continuous-time conservative random walks |
| Autoři: |
Bhattacharya, Satyaki, Volkov, Stanislav |
| Přispěvatelé: |
Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator |
| Zdroj: |
Journal of Applied Probability. 62(1):153-171 |
| Témata: |
Natural Sciences, Mathematical Sciences, Probability Theory and Statistics, Naturvetenskap, Matematik, Sannolikhetsteori och statistik |
| Popis: |
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d ≥ 2 and that the rate of direction changing follows a power law t-α, 0 < α ≤ 1, or the law (In t)-β where β ≥ 2. |
| Přístupová URL adresa: |
https://doi.org/10.1017/jpr.2024.46 |
| Databáze: |
SwePub |