Transience of continuous-time conservative random walks
Gespeichert in:
| Titel: | Transience of continuous-time conservative random walks |
|---|---|
| Autoren: | Bhattacharya, Satyaki, Volkov, Stanislav |
| Weitere Verfasser: | Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator |
| Quelle: | Journal of Applied Probability. 62(1):153-171 |
| Schlagwörter: | Natural Sciences, Mathematical Sciences, Probability Theory and Statistics, Naturvetenskap, Matematik, Sannolikhetsteori och statistik |
| Beschreibung: | We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d ≥ 2 and that the rate of direction changing follows a power law t-α, 0 < α ≤ 1, or the law (In t)-β where β ≥ 2. |
| Zugangs-URL: | https://doi.org/10.1017/jpr.2024.46 |
| Datenbank: | SwePub |
Schreiben Sie den ersten Kommentar!
Nájsť tento článok vo Web of Science