Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images
Gespeichert in:
| Titel: | Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images |
|---|---|
| Autoren: | Maquiling, Virmarie, Byrne, Sean Anthony, Niehorster, Diederick C., Carminati, Marco, Kasneci, Enkelejda |
| Weitere Verfasser: | Lund University, Joint Faculties of Humanities and Theology, Units, Lund University Humanities Lab, Lunds universitet, Humanistiska och teologiska fakulteterna, Fakultetsgemensamma verksamheter, Humanistlaboratoriet, Originator, Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Institutionen för psykologi, Originator |
| Quelle: | Proceedings of the ACM on Computer Graphics and Interactive Techniques. 8(2):1-16 |
| Schlagwörter: | Natural Sciences, Computer and Information Sciences, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Natural Language Processing, Språkbehandling och datorlingvistik |
| Beschreibung: | We explore the transformative potential of SAM 2, a vision foundation model, in advancing gaze estimation. SAM 2 addresses key challenges in gaze estimation by significantly reducing annotation time, simplifying deployment, and enhancing segmentation accuracy. Utilizing its zero-shot capabilities with minimal user input—a single click per video—we tested SAM 2 on over 14 million eye images from a diverse range of datasets, including the EDS challenge datasets and Labelled Pupils in the Wild. This is the first application of SAM 2 to the gaze estimation domain. Remarkably, SAM 2 matches the performance of domain-specific models in pupil segmentation, achieving competitive mIOU scores of up to 93% without fine-tuning. We argue that SAM 2 achieves the sought-after standard of domain generalization, with consistent mIOU scores (89.71%-93.74%) across diverse datasets, from virtual reality to "gaze-in-the-wild" scenarios. We provide our code and segmentation masks for these datasets to promote further research. |
| Zugangs-URL: | https://doi.org/10.1145/3729409 |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1145/3729409# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=25776193&ISBN=&volume=8&issue=2&date=20250601&spage=1&pages=1-16&title=Proceedings of the ACM on Computer Graphics and Interactive Techniques&atitle=Zero-Shot%20Pupil%20Segmentation%20with%20SAM%202%3A%20A%20Case%20Study%20of%20Over%2014%20Million%20Images&aulast=Maquiling%2C%20Virmarie&id=DOI:10.1145/3729409 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Maquiling%20V Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.8ff9fd0f.38de.4a82.bd02.500b02414d4a RelevancyScore: 1133 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1132.50830078125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Maquiling%2C+Virmarie%22">Maquiling, Virmarie</searchLink><br /><searchLink fieldCode="AR" term="%22Byrne%2C+Sean+Anthony%22">Byrne, Sean Anthony</searchLink><br /><searchLink fieldCode="AR" term="%22Niehorster%2C+Diederick+C%2E%22">Niehorster, Diederick C.</searchLink><br /><searchLink fieldCode="AR" term="%22Carminati%2C+Marco%22">Carminati, Marco</searchLink><br /><searchLink fieldCode="AR" term="%22Kasneci%2C+Enkelejda%22">Kasneci, Enkelejda</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Joint Faculties of Humanities and Theology, Units, Lund University Humanities Lab, Lunds universitet, Humanistiska och teologiska fakulteterna, Fakultetsgemensamma verksamheter, Humanistlaboratoriet, Originator<br />Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Institutionen för psykologi, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Proceedings of the ACM on Computer Graphics and Interactive Techniques</i>. 8(2):1-16 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Language+Processing%22">Natural Language Processing</searchLink><br /><searchLink fieldCode="DE" term="%22Språkbehandling+och+datorlingvistik%22">Språkbehandling och datorlingvistik</searchLink> – Name: Abstract Label: Description Group: Ab Data: We explore the transformative potential of SAM 2, a vision foundation model, in advancing gaze estimation. SAM 2 addresses key challenges in gaze estimation by significantly reducing annotation time, simplifying deployment, and enhancing segmentation accuracy. Utilizing its zero-shot capabilities with minimal user input—a single click per video—we tested SAM 2 on over 14 million eye images from a diverse range of datasets, including the EDS challenge datasets and Labelled Pupils in the Wild. This is the first application of SAM 2 to the gaze estimation domain. Remarkably, SAM 2 matches the performance of domain-specific models in pupil segmentation, achieving competitive mIOU scores of up to 93% without fine-tuning. We argue that SAM 2 achieves the sought-after standard of domain generalization, with consistent mIOU scores (89.71%-93.74%) across diverse datasets, from virtual reality to "gaze-in-the-wild" scenarios. We provide our code and segmentation masks for these datasets to promote further research. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1145/3729409" linkWindow="_blank">https://doi.org/10.1145/3729409</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.8ff9fd0f.38de.4a82.bd02.500b02414d4a |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1145/3729409 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 16 StartPage: 1 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Natural Language Processing Type: general – SubjectFull: Språkbehandling och datorlingvistik Type: general Titles: – TitleFull: Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Maquiling, Virmarie – PersonEntity: Name: NameFull: Byrne, Sean Anthony – PersonEntity: Name: NameFull: Niehorster, Diederick C. – PersonEntity: Name: NameFull: Carminati, Marco – PersonEntity: Name: NameFull: Kasneci, Enkelejda – PersonEntity: Name: NameFull: Lund University, Joint Faculties of Humanities and Theology, Units, Lund University Humanities Lab, Lunds universitet, Humanistiska och teologiska fakulteterna, Fakultetsgemensamma verksamheter, Humanistlaboratoriet, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Institutionen för psykologi, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 06 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 25776193 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 8 – Type: issue Value: 2 Titles: – TitleFull: Proceedings of the ACM on Computer Graphics and Interactive Techniques Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science