COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR

Uloženo v:
Podrobná bibliografie
Název: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
Autoři: Fournais, SØren, Frank, Rupert L., Goffeng, Magnus, Kachmar, Ayman, Sundqvist, Mikael
Přispěvatelé: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator
Zdroj: Duke Mathematical Journal. 174(2):313-353
Témata: Natural Sciences, Mathematical Sciences, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys
Popis: We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation.
Přístupová URL adresa: https://doi.org/10.1215/00127094-2024-0029
Databáze: SwePub
Popis
Abstrakt:We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation.
ISSN:00127094
15477398
DOI:10.1215/00127094-2024-0029