COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR

Uložené v:
Podrobná bibliografia
Názov: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
Autori: Fournais, SØren, Frank, Rupert L., Goffeng, Magnus, Kachmar, Ayman, Sundqvist, Mikael
Prispievatelia: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator
Zdroj: Duke Mathematical Journal. 174(2):313-353
Predmety: Natural Sciences, Mathematical Sciences, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys
Popis: We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation.
Prístupová URL adresa: https://doi.org/10.1215/00127094-2024-0029
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1215/00127094-2024-0029#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Fournais%20S
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.8918da05.4a1c.4b0c.9bf6.c2f78f67c81a
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Fournais%2C+SØren%22">Fournais, SØren</searchLink><br /><searchLink fieldCode="AR" term="%22Frank%2C+Rupert+L%2E%22">Frank, Rupert L.</searchLink><br /><searchLink fieldCode="AR" term="%22Goffeng%2C+Magnus%22">Goffeng, Magnus</searchLink><br /><searchLink fieldCode="AR" term="%22Kachmar%2C+Ayman%22">Kachmar, Ayman</searchLink><br /><searchLink fieldCode="AR" term="%22Sundqvist%2C+Mikael%22">Sundqvist, Mikael</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Duke Mathematical Journal</i>. 174(2):313-353
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences%22">Mathematical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Analysis%22">Mathematical Analysis</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Matematik%22">Matematik</searchLink><br /><searchLink fieldCode="DE" term="%22Matematisk+analys%22">Matematisk analys</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We study the Pauli operator in a 2-dimensional, connected domain with Neumann or Robin boundary condition. We prove a sharp lower bound on the number of negative eigenvalues reminiscent of the Aharonov-Casher formula. We apply this lower bound to obtain a new formula on the number of eigenvalues of the magnetic Neumann Laplacian in the semiclassical limit. Our approach relies on reduction to a boundary Dirac operator. We analyze this boundary operator in two different ways. The first approach uses Atiyah-Patodi-Singer (APS) index theory. The second approach relies on a conservation law for the Benjamin-Ono equation.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1215/00127094-2024-0029" linkWindow="_blank">https://doi.org/10.1215/00127094-2024-0029</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.8918da05.4a1c.4b0c.9bf6.c2f78f67c81a
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1215/00127094-2024-0029
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 41
        StartPage: 313
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Mathematical Sciences
        Type: general
      – SubjectFull: Mathematical Analysis
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Matematik
        Type: general
      – SubjectFull: Matematisk analys
        Type: general
    Titles:
      – TitleFull: COUNTING NEGATIVE EIGENVALUES FOR THE MAGNETIC PAULI OPERATOR
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Fournais, SØren
      – PersonEntity:
          Name:
            NameFull: Frank, Rupert L.
      – PersonEntity:
          Name:
            NameFull: Goffeng, Magnus
      – PersonEntity:
          Name:
            NameFull: Kachmar, Ayman
      – PersonEntity:
          Name:
            NameFull: Sundqvist, Mikael
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Algebra, Analysis and Dynamical Systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Algebra, analys och dynamiska system, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 00127094
            – Type: issn-print
              Value: 15477398
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 174
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Duke Mathematical Journal
              Type: main
ResultId 1