A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation
Uložené v:
| Názov: | A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation |
|---|---|
| Autori: | Yu, Huafei, Ai, Tinghua, Yang, Min, Huang, Weiming, Harrie, Lars |
| Prispievatelia: | Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator |
| Zdroj: | International Journal of Digital Earth. 16(1):1828-1852 |
| Predmety: | Natural Sciences, Earth and Related Environmental Sciences, Other Earth Sciences (including Geographical Information Science), Naturvetenskap, Geovetenskap och relaterad miljövetenskap, Annan geovetenskap (Här ingår: Geografisk informationsvetenskap), Physical Geography, Naturgeografi |
| Popis: | Similarity measurement has been a prevailing research topic in geographic information science. Geometric similarity measurement in scaling transformation (GSM_ST) is critical to ensure spatial data quality while balancing detailed information with distinctive features. However, GSM_ST is an uncertain problem due to subjective spatial cognition, global and local concerns, and geometric complexity. Traditional rule-based methods considering multiple consistent conditions require subjective adjustments to characteristics and weights, leading to poor robustness in addressing GSM_ST. This study proposes an unsupervised representation learning framework for automated GSM_ST, using a Graph Autoencoder Network (GAE) and drainage networks as an example. The framework involves constructing a drainage graph, designing the GAE architecture for GSM_ST, and using Cosine similarity to measure similarity based on the GAE-derived drainage embeddings in different scales. We perform extensive experiments and compare methods across 71 drainage networks during five scaling transformations. The results show that the proposed GAE method outperforms other methods with a satisfaction ratio of around 88% and has strong robustness. Moreover, our proposed method also can be applied to other scenarios, such as measuring similarity between geographical entities at different times and data from different datasets. |
| Prístupová URL adresa: | https://doi.org/10.1080/17538947.2023.2212920 |
| Databáza: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1080/17538947.2023.2212920# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=17538947&ISBN=&volume=16&issue=1&date=20230101&spage=1828&pages=1828-1852&title=International Journal of Digital Earth&atitle=A%20graph%20autoencoder%20network%20to%20measure%20the%20geometric%20similarity%20of%20drainage%20networks%20in%20scaling%20transformation&aulast=Yu%2C%20Huafei&id=DOI:10.1080/17538947.2023.2212920 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Yu%20H Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.88a826c7.9d47.4c3d.8c0b.65f609f4c3b6 RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Yu%2C+Huafei%22">Yu, Huafei</searchLink><br /><searchLink fieldCode="AR" term="%22Ai%2C+Tinghua%22">Ai, Tinghua</searchLink><br /><searchLink fieldCode="AR" term="%22Yang%2C+Min%22">Yang, Min</searchLink><br /><searchLink fieldCode="AR" term="%22Huang%2C+Weiming%22">Huang, Weiming</searchLink><br /><searchLink fieldCode="AR" term="%22Harrie%2C+Lars%22">Harrie, Lars</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator<br />Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator – Name: TitleSource Label: Source Group: Src Data: <i>International Journal of Digital Earth</i>. 16(1):1828-1852 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Earth+and+Related+Environmental+Sciences%22">Earth and Related Environmental Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Other+Earth+Sciences+%28including+Geographical+Information+Science%29%22">Other Earth Sciences (including Geographical Information Science)</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Geovetenskap+och+relaterad+miljövetenskap%22">Geovetenskap och relaterad miljövetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Annan+geovetenskap+%28Här+ingår%3A+Geografisk+informationsvetenskap%29%22">Annan geovetenskap (Här ingår: Geografisk informationsvetenskap)</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Geography%22">Physical Geography</searchLink><br /><searchLink fieldCode="DE" term="%22Naturgeografi%22">Naturgeografi</searchLink> – Name: Abstract Label: Description Group: Ab Data: Similarity measurement has been a prevailing research topic in geographic information science. Geometric similarity measurement in scaling transformation (GSM_ST) is critical to ensure spatial data quality while balancing detailed information with distinctive features. However, GSM_ST is an uncertain problem due to subjective spatial cognition, global and local concerns, and geometric complexity. Traditional rule-based methods considering multiple consistent conditions require subjective adjustments to characteristics and weights, leading to poor robustness in addressing GSM_ST. This study proposes an unsupervised representation learning framework for automated GSM_ST, using a Graph Autoencoder Network (GAE) and drainage networks as an example. The framework involves constructing a drainage graph, designing the GAE architecture for GSM_ST, and using Cosine similarity to measure similarity based on the GAE-derived drainage embeddings in different scales. We perform extensive experiments and compare methods across 71 drainage networks during five scaling transformations. The results show that the proposed GAE method outperforms other methods with a satisfaction ratio of around 88% and has strong robustness. Moreover, our proposed method also can be applied to other scenarios, such as measuring similarity between geographical entities at different times and data from different datasets. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1080/17538947.2023.2212920" linkWindow="_blank">https://doi.org/10.1080/17538947.2023.2212920</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.88a826c7.9d47.4c3d.8c0b.65f609f4c3b6 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1080/17538947.2023.2212920 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 25 StartPage: 1828 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Earth and Related Environmental Sciences Type: general – SubjectFull: Other Earth Sciences (including Geographical Information Science) Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Geovetenskap och relaterad miljövetenskap Type: general – SubjectFull: Annan geovetenskap (Här ingår: Geografisk informationsvetenskap) Type: general – SubjectFull: Physical Geography Type: general – SubjectFull: Naturgeografi Type: general Titles: – TitleFull: A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Yu, Huafei – PersonEntity: Name: NameFull: Ai, Tinghua – PersonEntity: Name: NameFull: Yang, Min – PersonEntity: Name: NameFull: Huang, Weiming – PersonEntity: Name: NameFull: Harrie, Lars – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 17538947 – Type: issn-print Value: 17538955 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 16 – Type: issue Value: 1 Titles: – TitleFull: International Journal of Digital Earth Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science