A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation

Uložené v:
Podrobná bibliografia
Názov: A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation
Autori: Yu, Huafei, Ai, Tinghua, Yang, Min, Huang, Weiming, Harrie, Lars
Prispievatelia: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator
Zdroj: International Journal of Digital Earth. 16(1):1828-1852
Predmety: Natural Sciences, Earth and Related Environmental Sciences, Other Earth Sciences (including Geographical Information Science), Naturvetenskap, Geovetenskap och relaterad miljövetenskap, Annan geovetenskap (Här ingår: Geografisk informationsvetenskap), Physical Geography, Naturgeografi
Popis: Similarity measurement has been a prevailing research topic in geographic information science. Geometric similarity measurement in scaling transformation (GSM_ST) is critical to ensure spatial data quality while balancing detailed information with distinctive features. However, GSM_ST is an uncertain problem due to subjective spatial cognition, global and local concerns, and geometric complexity. Traditional rule-based methods considering multiple consistent conditions require subjective adjustments to characteristics and weights, leading to poor robustness in addressing GSM_ST. This study proposes an unsupervised representation learning framework for automated GSM_ST, using a Graph Autoencoder Network (GAE) and drainage networks as an example. The framework involves constructing a drainage graph, designing the GAE architecture for GSM_ST, and using Cosine similarity to measure similarity based on the GAE-derived drainage embeddings in different scales. We perform extensive experiments and compare methods across 71 drainage networks during five scaling transformations. The results show that the proposed GAE method outperforms other methods with a satisfaction ratio of around 88% and has strong robustness. Moreover, our proposed method also can be applied to other scenarios, such as measuring similarity between geographical entities at different times and data from different datasets.
Prístupová URL adresa: https://doi.org/10.1080/17538947.2023.2212920
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1080/17538947.2023.2212920#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=17538947&ISBN=&volume=16&issue=1&date=20230101&spage=1828&pages=1828-1852&title=International Journal of Digital Earth&atitle=A%20graph%20autoencoder%20network%20to%20measure%20the%20geometric%20similarity%20of%20drainage%20networks%20in%20scaling%20transformation&aulast=Yu%2C%20Huafei&id=DOI:10.1080/17538947.2023.2212920
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Yu%20H
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.88a826c7.9d47.4c3d.8c0b.65f609f4c3b6
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yu%2C+Huafei%22">Yu, Huafei</searchLink><br /><searchLink fieldCode="AR" term="%22Ai%2C+Tinghua%22">Ai, Tinghua</searchLink><br /><searchLink fieldCode="AR" term="%22Yang%2C+Min%22">Yang, Min</searchLink><br /><searchLink fieldCode="AR" term="%22Huang%2C+Weiming%22">Huang, Weiming</searchLink><br /><searchLink fieldCode="AR" term="%22Harrie%2C+Lars%22">Harrie, Lars</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator<br />Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>International Journal of Digital Earth</i>. 16(1):1828-1852
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Earth+and+Related+Environmental+Sciences%22">Earth and Related Environmental Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Other+Earth+Sciences+%28including+Geographical+Information+Science%29%22">Other Earth Sciences (including Geographical Information Science)</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Geovetenskap+och+relaterad+miljövetenskap%22">Geovetenskap och relaterad miljövetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Annan+geovetenskap+%28Här+ingår%3A+Geografisk+informationsvetenskap%29%22">Annan geovetenskap (Här ingår: Geografisk informationsvetenskap)</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Geography%22">Physical Geography</searchLink><br /><searchLink fieldCode="DE" term="%22Naturgeografi%22">Naturgeografi</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Similarity measurement has been a prevailing research topic in geographic information science. Geometric similarity measurement in scaling transformation (GSM_ST) is critical to ensure spatial data quality while balancing detailed information with distinctive features. However, GSM_ST is an uncertain problem due to subjective spatial cognition, global and local concerns, and geometric complexity. Traditional rule-based methods considering multiple consistent conditions require subjective adjustments to characteristics and weights, leading to poor robustness in addressing GSM_ST. This study proposes an unsupervised representation learning framework for automated GSM_ST, using a Graph Autoencoder Network (GAE) and drainage networks as an example. The framework involves constructing a drainage graph, designing the GAE architecture for GSM_ST, and using Cosine similarity to measure similarity based on the GAE-derived drainage embeddings in different scales. We perform extensive experiments and compare methods across 71 drainage networks during five scaling transformations. The results show that the proposed GAE method outperforms other methods with a satisfaction ratio of around 88% and has strong robustness. Moreover, our proposed method also can be applied to other scenarios, such as measuring similarity between geographical entities at different times and data from different datasets.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1080/17538947.2023.2212920" linkWindow="_blank">https://doi.org/10.1080/17538947.2023.2212920</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.88a826c7.9d47.4c3d.8c0b.65f609f4c3b6
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1080/17538947.2023.2212920
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 25
        StartPage: 1828
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Earth and Related Environmental Sciences
        Type: general
      – SubjectFull: Other Earth Sciences (including Geographical Information Science)
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Geovetenskap och relaterad miljövetenskap
        Type: general
      – SubjectFull: Annan geovetenskap (Här ingår: Geografisk informationsvetenskap)
        Type: general
      – SubjectFull: Physical Geography
        Type: general
      – SubjectFull: Naturgeografi
        Type: general
    Titles:
      – TitleFull: A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yu, Huafei
      – PersonEntity:
          Name:
            NameFull: Ai, Tinghua
      – PersonEntity:
          Name:
            NameFull: Yang, Min
      – PersonEntity:
          Name:
            NameFull: Huang, Weiming
      – PersonEntity:
          Name:
            NameFull: Harrie, Lars
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Centre for Geographical Information Systems (GIS Centre), Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Centrum för geografiska informationssystem (GIS-centrum), Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 17538947
            – Type: issn-print
              Value: 17538955
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 16
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: International Journal of Digital Earth
              Type: main
ResultId 1