Direct Imaging of Nanoscale Ferroelectric Domains and Polarization Reversal in Ferroelectric Capacitors
Saved in:
| Title: | Direct Imaging of Nanoscale Ferroelectric Domains and Polarization Reversal in Ferroelectric Capacitors |
|---|---|
| Authors: | Landberg, Megan, Yan, Bixin, Chen, Huaiyu, Efe, Ipek, Trassin, Morgan, Wallentin, Jesper |
| Contributors: | Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator, Lund University, MAX IV Laboratory, Lunds universitet, MAX IV-laboratoriet, Originator |
| Source: | Nano Letters. 25(45):16304-16310 |
| Subject Terms: | Natural Sciences, Physical Sciences, Condensed Matter Physics (including Material Physics, Nano Physics), Naturvetenskap, Fysik, Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik) |
| Description: | Ferroelectric thin films present a powerful platform for next-generation computing and memory applications. However, domain morphology and dynamics in buried ferroelectric stacks have remained underexplored, despite their importance for real device performance. Here, nanoprobe X-ray diffraction (nano-XRD) is used to image ferroelectric domains inside BiFeO3-based capacitors, revealing local disorder in domain architecture and partial polarization reorientation caused by the capacitor electrostatic boundary conditions and internal stress. We demonstrate sensitivity to ferroelectric reversal in poled capacitors, highlighting expansive/compressive (001) strain for up-/down-polarization using nano-XRD. We observe significant quantitative and qualitative differences between poling by piezoresponse force microscopy and in devices. Further, electrical poling induces lattice tilt at electrode edges, which may modify performance in downscaled devices. Our results establish nano-XRD as a noninvasive probe of buried ferroelectric domain morphologies and dynamics, opening avenues for operando characterization of energy-efficient nanoscale devices. |
| Access URL: | https://doi.org/10.1021/acs.nanolett.5c05032 |
| Database: | SwePub |
| Abstract: | Ferroelectric thin films present a powerful platform for next-generation computing and memory applications. However, domain morphology and dynamics in buried ferroelectric stacks have remained underexplored, despite their importance for real device performance. Here, nanoprobe X-ray diffraction (nano-XRD) is used to image ferroelectric domains inside BiFeO3-based capacitors, revealing local disorder in domain architecture and partial polarization reorientation caused by the capacitor electrostatic boundary conditions and internal stress. We demonstrate sensitivity to ferroelectric reversal in poled capacitors, highlighting expansive/compressive (001) strain for up-/down-polarization using nano-XRD. We observe significant quantitative and qualitative differences between poling by piezoresponse force microscopy and in devices. Further, electrical poling induces lattice tilt at electrode edges, which may modify performance in downscaled devices. Our results establish nano-XRD as a noninvasive probe of buried ferroelectric domain morphologies and dynamics, opening avenues for operando characterization of energy-efficient nanoscale devices. |
|---|---|
| ISSN: | 15306984 15306992 |
| DOI: | 10.1021/acs.nanolett.5c05032 |
Nájsť tento článok vo Web of Science