Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing

Uložené v:
Podrobná bibliografia
Názov: Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing
Autori: Song, Qunying, Bensoussan, Avner, Mousavi, Mohammad Reza
Prispievatelia: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Competence centers, LTH, NEXTG2COM – a Vinnova Competence Centre in Advanced Digitalisation, Lunds universitet, Lunds Tekniska Högskola, Kompetenscentrum, LTH, NEXTG2COM – ett Vinnova kompetenscenter inom Avancerad Digitalisering, Originator
Zdroj: Automated Software Engineering. 32(2)
Predmety: Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Robotics and automation, Teknik, Elektroteknik och elektronik, Robotik och automation
Popis: With the emergence of autonomous vehicles comes the requirement of adequate and rigorous testing, particularly in critical scenarios that are both challenging and potentially hazardous. Generating synthetic simulation-based critical scenarios for testing autonomous vehicles has therefore received considerable interest, yet it is unclear how such scenarios relate to the actual crash or near-crash scenarios in the real world. Consequently, their realism is unknown. In this paper, we define realism as the degree of similarity of synthetic critical scenarios to real-world critical scenarios. We propose a methodology to measure realism using two metrics, namely attribute distribution and Euclidean distance. The methodology extracts various attributes from synthetic and realistic critical scenario datasets and performs a set of statistical tests to compare their distributions and distances. As a proof of concept for our methodology, we compare synthetic collision scenarios from DeepScenario against realistic autonomous vehicle collisions collected by the Department of Motor Vehicles in California, to analyse how well DeepScenario synthetic collision scenarios are aligned with real autonomous vehicle collisions recorded in California. We focus on five key attributes that are extractable from both datasets, and analyse the attribution distribution and distance between scenarios in the two datasets. Further, we derive recommendations to improve the realism of synthetic scenarios based on our analysis. Our study of realism provides a framework that can be replicated and extended for other dataset both concerning real-world and synthetically-generated scenarios.
Prístupová URL adresa: https://doi.org/10.1007/s10515-025-00499-4
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1007/s10515-025-00499-4#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=09288910&ISBN=&volume=32&issue=2&date=20250101&spage=&pages=&title=Automated Software Engineering&atitle=Synthetic%20versus%20real%3A%20an%20analysis%20of%20critical%20scenarios%20for%20autonomous%20vehicle%20testing&aulast=Song%2C%20Qunying&id=DOI:10.1007/s10515-025-00499-4
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Song%20Q
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.7eff06c0.84ef.4295.b966.65e174c77a3b
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Song%2C+Qunying%22">Song, Qunying</searchLink><br /><searchLink fieldCode="AR" term="%22Bensoussan%2C+Avner%22">Bensoussan, Avner</searchLink><br /><searchLink fieldCode="AR" term="%22Mousavi%2C+Mohammad+Reza%22">Mousavi, Mohammad Reza</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, Competence centers, LTH, NEXTG2COM – a Vinnova Competence Centre in Advanced Digitalisation, Lunds universitet, Lunds Tekniska Högskola, Kompetenscentrum, LTH, NEXTG2COM – ett Vinnova kompetenscenter inom Avancerad Digitalisering, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Automated Software Engineering</i>. 32(2)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+Engineering%22">Electrical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+Engineering%22">Electronic Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Engineering%22">Information Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Robotics+and+automation%22">Robotics and automation</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Elektroteknik+och+elektronik%22">Elektroteknik och elektronik</searchLink><br /><searchLink fieldCode="DE" term="%22Robotik+och+automation%22">Robotik och automation</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: With the emergence of autonomous vehicles comes the requirement of adequate and rigorous testing, particularly in critical scenarios that are both challenging and potentially hazardous. Generating synthetic simulation-based critical scenarios for testing autonomous vehicles has therefore received considerable interest, yet it is unclear how such scenarios relate to the actual crash or near-crash scenarios in the real world. Consequently, their realism is unknown. In this paper, we define realism as the degree of similarity of synthetic critical scenarios to real-world critical scenarios. We propose a methodology to measure realism using two metrics, namely attribute distribution and Euclidean distance. The methodology extracts various attributes from synthetic and realistic critical scenario datasets and performs a set of statistical tests to compare their distributions and distances. As a proof of concept for our methodology, we compare synthetic collision scenarios from DeepScenario against realistic autonomous vehicle collisions collected by the Department of Motor Vehicles in California, to analyse how well DeepScenario synthetic collision scenarios are aligned with real autonomous vehicle collisions recorded in California. We focus on five key attributes that are extractable from both datasets, and analyse the attribution distribution and distance between scenarios in the two datasets. Further, we derive recommendations to improve the realism of synthetic scenarios based on our analysis. Our study of realism provides a framework that can be replicated and extended for other dataset both concerning real-world and synthetically-generated scenarios.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1007/s10515-025-00499-4" linkWindow="_blank">https://doi.org/10.1007/s10515-025-00499-4</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.7eff06c0.84ef.4295.b966.65e174c77a3b
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s10515-025-00499-4
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Engineering and Technology
        Type: general
      – SubjectFull: Electrical Engineering
        Type: general
      – SubjectFull: Electronic Engineering
        Type: general
      – SubjectFull: Information Engineering
        Type: general
      – SubjectFull: Robotics and automation
        Type: general
      – SubjectFull: Teknik
        Type: general
      – SubjectFull: Elektroteknik och elektronik
        Type: general
      – SubjectFull: Robotik och automation
        Type: general
    Titles:
      – TitleFull: Synthetic versus real: an analysis of critical scenarios for autonomous vehicle testing
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Song, Qunying
      – PersonEntity:
          Name:
            NameFull: Bensoussan, Avner
      – PersonEntity:
          Name:
            NameFull: Mousavi, Mohammad Reza
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Competence centers, LTH, NEXTG2COM – a Vinnova Competence Centre in Advanced Digitalisation, Lunds universitet, Lunds Tekniska Högskola, Kompetenscentrum, LTH, NEXTG2COM – ett Vinnova kompetenscenter inom Avancerad Digitalisering, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 09288910
            – Type: issn-print
              Value: 15737535
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 32
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Automated Software Engineering
              Type: main
ResultId 1