Automatic Implicit Motive Codings Are at Least as Accurate as Humans’ and 99% Faster

Saved in:
Bibliographic Details
Title: Automatic Implicit Motive Codings Are at Least as Accurate as Humans’ and 99% Faster
Authors: Nilsson, August Håkan, Runge, J. Malte, Ganesan, Adithya V., Lövenstierne, Carl Viggo N.G., Soni, Nikita, Kjell, Oscar N.E.
Contributors: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Institutionen för psykologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator
Source: Journal of Personality and Social Psychology. 128(6):1371-1392
Subject Terms: Natural Sciences, Computer and Information Sciences, Naturvetenskap, Data- och informationsvetenskap (Datateknik)
Description: Implicit motives, nonconscious needs that influence individuals’ behaviors and shape their emotions, have been part of personality research for nearly a century but differ from personality traits. The implicit motive assessment is very resource-intensive, involving expert coding of individuals’ written stories about ambiguous pictures, and has hampered implicit motive research. Using large language models and machine learning techniques, we aimed to create high-quality implicit motive models that are easy for researchers to use. We trained models to code the need for power, achievement, and affiliation (N = 85,028 sentences). The person-level assessments converged strongly with the holdout data, intraclass correlation coefficient, ICC(1,1) =.85,.87, and.89 for achievement, power, and affiliation, respectively. We demonstrated causal validity by reproducing two classical experimental studies that aroused implicit motives. We let three coders recode sentences where our models and the original coders strongly disagreed. We found that the new coders agreed with our models in 85% of the cases (p <.001, ϕ =.69). Using topic and word embedding analyses, we found specific language associated with each motive to have a high face validity. We argue that these models can be used in addition to, or instead of, human coders.We provide a free, user-friendly framework in the established R-package text and a tutorial for researchers to apply the models to their data, as these models reduce the coding time by over 99% and require no cognitive effort for coding. We hope this coding automation will facilitate a historical implicit motive research renaissance.
Access URL: https://doi.org/10.1037/pspp0000544
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1037/pspp0000544#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nilsson%20AH
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.7dd21877.8fc2.4a40.84f9.d38e5a78aa0a
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Automatic Implicit Motive Codings Are at Least as Accurate as Humans’ and 99% Faster
– Name: Author
  Label: Authors
  Group: Au
  Data: &lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Nilsson%2C+August+H&#229;kan%22&quot;&gt;Nilsson, August H&#229;kan&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Runge%2C+J%2E+Malte%22&quot;&gt;Runge, J. Malte&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Ganesan%2C+Adithya+V%2E%22&quot;&gt;Ganesan, Adithya V.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22L&#246;venstierne%2C+Carl+Viggo+N%2EG%2E%22&quot;&gt;L&#246;venstierne, Carl Viggo N.G.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Soni%2C+Nikita%22&quot;&gt;Soni, Nikita&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Kjell%2C+Oscar+N%2EE%2E%22&quot;&gt;Kjell, Oscar N.E.&lt;/searchLink&gt;
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samh&#228;llsvetenskapliga fakulteten, Samh&#228;llsvetenskapliga institutioner och centrumbildningar, Institutionen f&#246;r psykologi, Originator&lt;br /&gt;Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilomr&#229;den och andra starka forskningsmilj&#246;er, Strategiska forskningsomr&#229;den (SFO), eSSENCE: The e-Science Collaboration, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: &lt;i&gt;Journal of Personality and Social Psychology&lt;/i&gt;. 128(6):1371-1392
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Natural+Sciences%22&quot;&gt;Natural Sciences&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Computer+and+Information+Sciences%22&quot;&gt;Computer and Information Sciences&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Naturvetenskap%22&quot;&gt;Naturvetenskap&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Data-+och+informationsvetenskap+%28Datateknik%29%22&quot;&gt;Data- och informationsvetenskap (Datateknik)&lt;/searchLink&gt;
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Implicit motives, nonconscious needs that influence individuals’ behaviors and shape their emotions, have been part of personality research for nearly a century but differ from personality traits. The implicit motive assessment is very resource-intensive, involving expert coding of individuals’ written stories about ambiguous pictures, and has hampered implicit motive research. Using large language models and machine learning techniques, we aimed to create high-quality implicit motive models that are easy for researchers to use. We trained models to code the need for power, achievement, and affiliation (N = 85,028 sentences). The person-level assessments converged strongly with the holdout data, intraclass correlation coefficient, ICC(1,1) =.85,.87, and.89 for achievement, power, and affiliation, respectively. We demonstrated causal validity by reproducing two classical experimental studies that aroused implicit motives. We let three coders recode sentences where our models and the original coders strongly disagreed. We found that the new coders agreed with our models in 85% of the cases (p &lt;.001, ϕ =.69). Using topic and word embedding analyses, we found specific language associated with each motive to have a high face validity. We argue that these models can be used in addition to, or instead of, human coders.We provide a free, user-friendly framework in the established R-package text and a tutorial for researchers to apply the models to their data, as these models reduce the coding time by over 99% and require no cognitive effort for coding. We hope this coding automation will facilitate a historical implicit motive research renaissance.
– Name: URL
  Label: Access URL
  Group: URL
  Data: &lt;link linkTarget=&quot;URL&quot; linkTerm=&quot;https://doi.org/10.1037/pspp0000544&quot; linkWindow=&quot;_blank&quot;&gt;https://doi.org/10.1037/pspp0000544&lt;/link&gt;
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.7dd21877.8fc2.4a40.84f9.d38e5a78aa0a
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1037/pspp0000544
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 22
        StartPage: 1371
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
    Titles:
      – TitleFull: Automatic Implicit Motive Codings Are at Least as Accurate as Humans’ and 99% Faster
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Nilsson, August Håkan
      – PersonEntity:
          Name:
            NameFull: Runge, J. Malte
      – PersonEntity:
          Name:
            NameFull: Ganesan, Adithya V.
      – PersonEntity:
          Name:
            NameFull: Lövenstierne, Carl Viggo N.G.
      – PersonEntity:
          Name:
            NameFull: Soni, Nikita
      – PersonEntity:
          Name:
            NameFull: Kjell, Oscar N.E.
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Department of Psychology, Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Institutionen för psykologi, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 00223514
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 128
            – Type: issue
              Value: 6
          Titles:
            – TitleFull: Journal of Personality and Social Psychology
              Type: main
ResultId 1