A comparative analysis of ML techniques for bug report classification

Saved in:
Bibliographic Details
Title: A comparative analysis of ML techniques for bug report classification
Authors: Laiq, Muhammad, Ali, Nauman Bin, Börstler, Jürgen, Engström, Emelie
Contributors: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
Source: Journal of Systems and Software. 227
Subject Terms: Natural Sciences, Computer and Information Sciences, Software Engineering, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Programvaruteknik, Computer Engineering, Datorteknik
Description: Several studies have evaluated various ML techniques and found promising results in classifying bug reports. However, these studies have used different evaluation designs, making it difficult to compare their results. Furthermore, they have focused primarily on accuracy and did not consider other potentially relevant factors such as generalizability, explainability, and maintenance cost. These two aspects make it difficult for practitioners and researchers to choose an appropriate ML technique for a given context. Therefore, we compare promising ML techniques against practitioners’ concerns using evaluation criteria that go beyond accuracy. Based on an existing framework for adopting ML techniques, we developed an evaluation framework for ML techniques for bug report classification. We used this framework to compare nine ML techniques on three datasets. The results enable a tradeoff analysis between various promising ML techniques. The results show that an ML technique with the highest predictive accuracy might not be the most suitable technique for some contexts. The overall approach presented in the paper supports making informed decisions when choosing ML techniques. It is not locked to the specific techniques, datasets, or factors we have selected here, and others could easily use and adapt it for additional techniques or concerns. Editor's note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
Access URL: https://doi.org/10.1016/j.jss.2025.112457
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1016/j.jss.2025.112457#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=01641212&ISBN=&volume=227&issue=&date=20250101&spage=&pages=&title=Journal of Systems and Software&atitle=A%20comparative%20analysis%20of%20ML%20techniques%20for%20bug%20report%20classification&aulast=Laiq%2C%20Muhammad&id=DOI:10.1016/j.jss.2025.112457
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Laiq%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.7c871a48.2c47.451f.83e5.c5801006cb70
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A comparative analysis of ML techniques for bug report classification
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Laiq%2C+Muhammad%22">Laiq, Muhammad</searchLink><br /><searchLink fieldCode="AR" term="%22Ali%2C+Nauman+Bin%22">Ali, Nauman Bin</searchLink><br /><searchLink fieldCode="AR" term="%22Börstler%2C+Jürgen%22">Börstler, Jürgen</searchLink><br /><searchLink fieldCode="AR" term="%22Engström%2C+Emelie%22">Engström, Emelie</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Journal of Systems and Software</i>. 227
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Software+Engineering%22">Software Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Programvaruteknik%22">Programvaruteknik</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Engineering%22">Computer Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Datorteknik%22">Datorteknik</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Several studies have evaluated various ML techniques and found promising results in classifying bug reports. However, these studies have used different evaluation designs, making it difficult to compare their results. Furthermore, they have focused primarily on accuracy and did not consider other potentially relevant factors such as generalizability, explainability, and maintenance cost. These two aspects make it difficult for practitioners and researchers to choose an appropriate ML technique for a given context. Therefore, we compare promising ML techniques against practitioners’ concerns using evaluation criteria that go beyond accuracy. Based on an existing framework for adopting ML techniques, we developed an evaluation framework for ML techniques for bug report classification. We used this framework to compare nine ML techniques on three datasets. The results enable a tradeoff analysis between various promising ML techniques. The results show that an ML technique with the highest predictive accuracy might not be the most suitable technique for some contexts. The overall approach presented in the paper supports making informed decisions when choosing ML techniques. It is not locked to the specific techniques, datasets, or factors we have selected here, and others could easily use and adapt it for additional techniques or concerns. Editor's note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1016/j.jss.2025.112457" linkWindow="_blank">https://doi.org/10.1016/j.jss.2025.112457</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.7c871a48.2c47.451f.83e5.c5801006cb70
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.jss.2025.112457
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Software Engineering
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Programvaruteknik
        Type: general
      – SubjectFull: Computer Engineering
        Type: general
      – SubjectFull: Datorteknik
        Type: general
    Titles:
      – TitleFull: A comparative analysis of ML techniques for bug report classification
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Laiq, Muhammad
      – PersonEntity:
          Name:
            NameFull: Ali, Nauman Bin
      – PersonEntity:
          Name:
            NameFull: Börstler, Jürgen
      – PersonEntity:
          Name:
            NameFull: Engström, Emelie
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Software Engineering Research Group, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Programvarusystem, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 01641212
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 227
          Titles:
            – TitleFull: Journal of Systems and Software
              Type: main
ResultId 1