Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm
Gespeichert in:
| Titel: | Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm |
|---|---|
| Autoren: | Porwit, Anna, Violidaki, Despoina, Axler, Olof, Lacombe, Francis, Ehinger, Mats, Béné, Marie C |
| Weitere Verfasser: | Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator |
| Quelle: | Cytometry Part B - Clinical Cytometry. 102(2):134-142 |
| Schlagwörter: | Medical and Health Sciences, Clinical Medicine, Hematology, Medicin och hälsovetenskap, Klinisk medicin, Hematologi |
| Beschreibung: | BACKGROUND: The Flow-Self Organizing Maps (FlowSOM) artificial intelligence (AI) program, available within the Bioconductor open-source R-project, allows for an unsupervised visualization and interpretation of multiparameter flow cytometry (MFC) data. METHODS: Applied to a reference merged file from 11 normal bone marrows (BM) analyzed with an MFC panel targeting erythropoiesis, FlowSOM allowed to identify six subpopulations of erythropoietic precursors (EPs). In order to find out how this program would help in the characterization of abnormalities in erythropoiesis, MFC data from list-mode files of 16 patients (5 with non-clonal anemia and 11 with myelodysplastic syndrome [MDS] at diagnosis) were analyzed. RESULTS: Unsupervised FlowSOM analysis identified 18 additional subsets of EPs not present in the merged normal BM samples. Most of them involved subtle unexpected and previously unreported modifications in CD36 and/or CD71 antigen expression and in side scatter characteristics. Three patterns were observed in MDS patient samples: i) EPs with decreased proliferation and abnormal proliferating precursors, ii) EPs with a normal proliferating fraction and maturation defects in late precursors, and iii) EPs with a reduced erythropoietic fraction but mostly normal patterns suggesting that erythropoiesis was less affected. Additionally, analysis of sequential samples from an MDS patient under treatment showed a decrease of abnormal subsets after azacytidine treatment and near normalization after allogeneic hematopoietic stem-cell transplantation. CONCLUSION: Unsupervised clustering analysis of MFC data discloses subtle alterations in erythropoiesis not detectable by cytology nor FCM supervised analysis. This novel AI analytical approach sheds some new light on the pathophysiology of these conditions. |
| Zugangs-URL: | https://doi.org/10.1002/cyto.b.22059 |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1002/cyto.b.22059# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Porwit%20A Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.68093df7.d11c.4dbc.920a.448c6e3341bd RelevancyScore: 1011 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1011.01770019531 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Porwit%2C+Anna%22">Porwit, Anna</searchLink><br /><searchLink fieldCode="AR" term="%22Violidaki%2C+Despoina%22">Violidaki, Despoina</searchLink><br /><searchLink fieldCode="AR" term="%22Axler%2C+Olof%22">Axler, Olof</searchLink><br /><searchLink fieldCode="AR" term="%22Lacombe%2C+Francis%22">Lacombe, Francis</searchLink><br /><searchLink fieldCode="AR" term="%22Ehinger%2C+Mats%22">Ehinger, Mats</searchLink><br /><searchLink fieldCode="AR" term="%22Béné%2C+Marie+C%22">Béné, Marie C</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Cytometry Part B - Clinical Cytometry</i>. 102(2):134-142 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Medical+and+Health+Sciences%22">Medical and Health Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Clinical+Medicine%22">Clinical Medicine</searchLink><br /><searchLink fieldCode="DE" term="%22Hematology%22">Hematology</searchLink><br /><searchLink fieldCode="DE" term="%22Medicin+och+hälsovetenskap%22">Medicin och hälsovetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Klinisk+medicin%22">Klinisk medicin</searchLink><br /><searchLink fieldCode="DE" term="%22Hematologi%22">Hematologi</searchLink> – Name: Abstract Label: Description Group: Ab Data: BACKGROUND: The Flow-Self Organizing Maps (FlowSOM) artificial intelligence (AI) program, available within the Bioconductor open-source R-project, allows for an unsupervised visualization and interpretation of multiparameter flow cytometry (MFC) data. METHODS: Applied to a reference merged file from 11 normal bone marrows (BM) analyzed with an MFC panel targeting erythropoiesis, FlowSOM allowed to identify six subpopulations of erythropoietic precursors (EPs). In order to find out how this program would help in the characterization of abnormalities in erythropoiesis, MFC data from list-mode files of 16 patients (5 with non-clonal anemia and 11 with myelodysplastic syndrome [MDS] at diagnosis) were analyzed. RESULTS: Unsupervised FlowSOM analysis identified 18 additional subsets of EPs not present in the merged normal BM samples. Most of them involved subtle unexpected and previously unreported modifications in CD36 and/or CD71 antigen expression and in side scatter characteristics. Three patterns were observed in MDS patient samples: i) EPs with decreased proliferation and abnormal proliferating precursors, ii) EPs with a normal proliferating fraction and maturation defects in late precursors, and iii) EPs with a reduced erythropoietic fraction but mostly normal patterns suggesting that erythropoiesis was less affected. Additionally, analysis of sequential samples from an MDS patient under treatment showed a decrease of abnormal subsets after azacytidine treatment and near normalization after allogeneic hematopoietic stem-cell transplantation. CONCLUSION: Unsupervised clustering analysis of MFC data discloses subtle alterations in erythropoiesis not detectable by cytology nor FCM supervised analysis. This novel AI analytical approach sheds some new light on the pathophysiology of these conditions. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1002/cyto.b.22059" linkWindow="_blank">https://doi.org/10.1002/cyto.b.22059</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.68093df7.d11c.4dbc.920a.448c6e3341bd |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1002/cyto.b.22059 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 9 StartPage: 134 Subjects: – SubjectFull: Medical and Health Sciences Type: general – SubjectFull: Clinical Medicine Type: general – SubjectFull: Hematology Type: general – SubjectFull: Medicin och hälsovetenskap Type: general – SubjectFull: Klinisk medicin Type: general – SubjectFull: Hematologi Type: general Titles: – TitleFull: Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Porwit, Anna – PersonEntity: Name: NameFull: Violidaki, Despoina – PersonEntity: Name: NameFull: Axler, Olof – PersonEntity: Name: NameFull: Lacombe, Francis – PersonEntity: Name: NameFull: Ehinger, Mats – PersonEntity: Name: NameFull: Béné, Marie C – PersonEntity: Name: NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2022 Identifiers: – Type: issn-print Value: 15524949 – Type: issn-print Value: 15524957 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 102 – Type: issue Value: 2 Titles: – TitleFull: Cytometry Part B - Clinical Cytometry Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science