Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm

Gespeichert in:
Bibliographische Detailangaben
Titel: Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm
Autoren: Porwit, Anna, Violidaki, Despoina, Axler, Olof, Lacombe, Francis, Ehinger, Mats, Béné, Marie C
Weitere Verfasser: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator
Quelle: Cytometry Part B - Clinical Cytometry. 102(2):134-142
Schlagwörter: Medical and Health Sciences, Clinical Medicine, Hematology, Medicin och hälsovetenskap, Klinisk medicin, Hematologi
Beschreibung: BACKGROUND: The Flow-Self Organizing Maps (FlowSOM) artificial intelligence (AI) program, available within the Bioconductor open-source R-project, allows for an unsupervised visualization and interpretation of multiparameter flow cytometry (MFC) data. METHODS: Applied to a reference merged file from 11 normal bone marrows (BM) analyzed with an MFC panel targeting erythropoiesis, FlowSOM allowed to identify six subpopulations of erythropoietic precursors (EPs). In order to find out how this program would help in the characterization of abnormalities in erythropoiesis, MFC data from list-mode files of 16 patients (5 with non-clonal anemia and 11 with myelodysplastic syndrome [MDS] at diagnosis) were analyzed. RESULTS: Unsupervised FlowSOM analysis identified 18 additional subsets of EPs not present in the merged normal BM samples. Most of them involved subtle unexpected and previously unreported modifications in CD36 and/or CD71 antigen expression and in side scatter characteristics. Three patterns were observed in MDS patient samples: i) EPs with decreased proliferation and abnormal proliferating precursors, ii) EPs with a normal proliferating fraction and maturation defects in late precursors, and iii) EPs with a reduced erythropoietic fraction but mostly normal patterns suggesting that erythropoiesis was less affected. Additionally, analysis of sequential samples from an MDS patient under treatment showed a decrease of abnormal subsets after azacytidine treatment and near normalization after allogeneic hematopoietic stem-cell transplantation. CONCLUSION: Unsupervised clustering analysis of MFC data discloses subtle alterations in erythropoiesis not detectable by cytology nor FCM supervised analysis. This novel AI analytical approach sheds some new light on the pathophysiology of these conditions.
Zugangs-URL: https://doi.org/10.1002/cyto.b.22059
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1002/cyto.b.22059#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Porwit%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.68093df7.d11c.4dbc.920a.448c6e3341bd
RelevancyScore: 1011
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1011.01770019531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Porwit%2C+Anna%22">Porwit, Anna</searchLink><br /><searchLink fieldCode="AR" term="%22Violidaki%2C+Despoina%22">Violidaki, Despoina</searchLink><br /><searchLink fieldCode="AR" term="%22Axler%2C+Olof%22">Axler, Olof</searchLink><br /><searchLink fieldCode="AR" term="%22Lacombe%2C+Francis%22">Lacombe, Francis</searchLink><br /><searchLink fieldCode="AR" term="%22Ehinger%2C+Mats%22">Ehinger, Mats</searchLink><br /><searchLink fieldCode="AR" term="%22Béné%2C+Marie+C%22">Béné, Marie C</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Cytometry Part B - Clinical Cytometry</i>. 102(2):134-142
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Medical+and+Health+Sciences%22">Medical and Health Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Clinical+Medicine%22">Clinical Medicine</searchLink><br /><searchLink fieldCode="DE" term="%22Hematology%22">Hematology</searchLink><br /><searchLink fieldCode="DE" term="%22Medicin+och+hälsovetenskap%22">Medicin och hälsovetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Klinisk+medicin%22">Klinisk medicin</searchLink><br /><searchLink fieldCode="DE" term="%22Hematologi%22">Hematologi</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: BACKGROUND: The Flow-Self Organizing Maps (FlowSOM) artificial intelligence (AI) program, available within the Bioconductor open-source R-project, allows for an unsupervised visualization and interpretation of multiparameter flow cytometry (MFC) data. METHODS: Applied to a reference merged file from 11 normal bone marrows (BM) analyzed with an MFC panel targeting erythropoiesis, FlowSOM allowed to identify six subpopulations of erythropoietic precursors (EPs). In order to find out how this program would help in the characterization of abnormalities in erythropoiesis, MFC data from list-mode files of 16 patients (5 with non-clonal anemia and 11 with myelodysplastic syndrome [MDS] at diagnosis) were analyzed. RESULTS: Unsupervised FlowSOM analysis identified 18 additional subsets of EPs not present in the merged normal BM samples. Most of them involved subtle unexpected and previously unreported modifications in CD36 and/or CD71 antigen expression and in side scatter characteristics. Three patterns were observed in MDS patient samples: i) EPs with decreased proliferation and abnormal proliferating precursors, ii) EPs with a normal proliferating fraction and maturation defects in late precursors, and iii) EPs with a reduced erythropoietic fraction but mostly normal patterns suggesting that erythropoiesis was less affected. Additionally, analysis of sequential samples from an MDS patient under treatment showed a decrease of abnormal subsets after azacytidine treatment and near normalization after allogeneic hematopoietic stem-cell transplantation. CONCLUSION: Unsupervised clustering analysis of MFC data discloses subtle alterations in erythropoiesis not detectable by cytology nor FCM supervised analysis. This novel AI analytical approach sheds some new light on the pathophysiology of these conditions.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1002/cyto.b.22059" linkWindow="_blank">https://doi.org/10.1002/cyto.b.22059</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.68093df7.d11c.4dbc.920a.448c6e3341bd
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1002/cyto.b.22059
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 9
        StartPage: 134
    Subjects:
      – SubjectFull: Medical and Health Sciences
        Type: general
      – SubjectFull: Clinical Medicine
        Type: general
      – SubjectFull: Hematology
        Type: general
      – SubjectFull: Medicin och hälsovetenskap
        Type: general
      – SubjectFull: Klinisk medicin
        Type: general
      – SubjectFull: Hematologi
        Type: general
    Titles:
      – TitleFull: Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Porwit, Anna
      – PersonEntity:
          Name:
            NameFull: Violidaki, Despoina
      – PersonEntity:
          Name:
            NameFull: Axler, Olof
      – PersonEntity:
          Name:
            NameFull: Lacombe, Francis
      – PersonEntity:
          Name:
            NameFull: Ehinger, Mats
      – PersonEntity:
          Name:
            NameFull: Béné, Marie C
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section V, Pathology, Lund, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion V, Patologi, Lund, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Section I, Tumor microenvironment, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Lund, Sektion I, Tumörmikromiljö, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-print
              Value: 15524949
            – Type: issn-print
              Value: 15524957
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 102
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Cytometry Part B - Clinical Cytometry
              Type: main
ResultId 1