A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing

Uloženo v:
Podrobná bibliografie
Název: A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing
Autoři: Zhu, Zhongyunshen, Persson, Anton E.O., Wernersson, Lars Erik
Přispěvatelé: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator
Zdroj: Advanced Electronic Materials. 11(3)
Témata: Natural Sciences, Computer and Information Sciences, Computer Engineering, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorteknik
Popis: Compact in-memory computing architectures are desirable to embed artificial intelligence (AI) in resource-restricted edge devices. However, current technologies face limitations in both the area and energy efficiency. Here, a reconfigurable ferroelectric tunnel field-effect transistor (ferro-TFET) is presented that can be used as an ultra-scaled cell for low-power in-memory data processing. A gate-all-around ferroelectric film is integrated on a vertical nanowire TFET with a gate/source overlapped channel, enabling non-volatilely reconfigurable anti-ambipolarity by programming the ferroelectric polarization state. By considering the stored polarization state and reading voltage as inputs, an XNOR operation is achieved in a single-gate ferro-TFET. It is shown that the ferro-TFETs can be implemented in a crossbar array for convolutional frequency filtering whose performance can be evaluated by an impulse-response method considering the effect of device-to-device variation based on statistics. Benefiting from the miniaturized footprint, non-volatility, and low-power operation, ferro-TFETs show promises as a one-transistor in-memory computing cell for area- and energy-efficient edge AI applications.
Přístupová URL adresa: https://doi.org/10.1002/aelm.202400335
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1002/aelm.202400335#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=2199160X&ISBN=&volume=11&issue=3&date=20250101&spage=&pages=&title=Advanced Electronic Materials&atitle=A%20Reconfigurable%20Ferroelectric%20Transistor%20as%20An%20Ultra-Scaled%20Cell%20for%20Low-Power%20In-Memory%20Data%20Processing&aulast=Zhu%2C%20Zhongyunshen&id=DOI:10.1002/aelm.202400335
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhu%20Z
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.5e8c4599.f88f.4b45.b314.ce500fd046e5
RelevancyScore: 1065
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhu%2C+Zhongyunshen%22">Zhu, Zhongyunshen</searchLink><br /><searchLink fieldCode="AR" term="%22Persson%2C+Anton+E%2EO%2E%22">Persson, Anton E.O.</searchLink><br /><searchLink fieldCode="AR" term="%22Wernersson%2C+Lars+Erik%22">Wernersson, Lars Erik</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Advanced Electronic Materials</i>. 11(3)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Engineering%22">Computer Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorteknik%22">Datorteknik</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Compact in-memory computing architectures are desirable to embed artificial intelligence (AI) in resource-restricted edge devices. However, current technologies face limitations in both the area and energy efficiency. Here, a reconfigurable ferroelectric tunnel field-effect transistor (ferro-TFET) is presented that can be used as an ultra-scaled cell for low-power in-memory data processing. A gate-all-around ferroelectric film is integrated on a vertical nanowire TFET with a gate/source overlapped channel, enabling non-volatilely reconfigurable anti-ambipolarity by programming the ferroelectric polarization state. By considering the stored polarization state and reading voltage as inputs, an XNOR operation is achieved in a single-gate ferro-TFET. It is shown that the ferro-TFETs can be implemented in a crossbar array for convolutional frequency filtering whose performance can be evaluated by an impulse-response method considering the effect of device-to-device variation based on statistics. Benefiting from the miniaturized footprint, non-volatility, and low-power operation, ferro-TFETs show promises as a one-transistor in-memory computing cell for area- and energy-efficient edge AI applications.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1002/aelm.202400335" linkWindow="_blank">https://doi.org/10.1002/aelm.202400335</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.5e8c4599.f88f.4b45.b314.ce500fd046e5
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1002/aelm.202400335
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Computer Engineering
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Datorteknik
        Type: general
    Titles:
      – TitleFull: A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhu, Zhongyunshen
      – PersonEntity:
          Name:
            NameFull: Persson, Anton E.O.
      – PersonEntity:
          Name:
            NameFull: Wernersson, Lars Erik
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 2199160X
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 11
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Advanced Electronic Materials
              Type: main
ResultId 1