A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing
Uloženo v:
| Název: | A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing |
|---|---|
| Autoři: | Zhu, Zhongyunshen, Persson, Anton E.O., Wernersson, Lars Erik |
| Přispěvatelé: | Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator |
| Zdroj: | Advanced Electronic Materials. 11(3) |
| Témata: | Natural Sciences, Computer and Information Sciences, Computer Engineering, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorteknik |
| Popis: | Compact in-memory computing architectures are desirable to embed artificial intelligence (AI) in resource-restricted edge devices. However, current technologies face limitations in both the area and energy efficiency. Here, a reconfigurable ferroelectric tunnel field-effect transistor (ferro-TFET) is presented that can be used as an ultra-scaled cell for low-power in-memory data processing. A gate-all-around ferroelectric film is integrated on a vertical nanowire TFET with a gate/source overlapped channel, enabling non-volatilely reconfigurable anti-ambipolarity by programming the ferroelectric polarization state. By considering the stored polarization state and reading voltage as inputs, an XNOR operation is achieved in a single-gate ferro-TFET. It is shown that the ferro-TFETs can be implemented in a crossbar array for convolutional frequency filtering whose performance can be evaluated by an impulse-response method considering the effect of device-to-device variation based on statistics. Benefiting from the miniaturized footprint, non-volatility, and low-power operation, ferro-TFETs show promises as a one-transistor in-memory computing cell for area- and energy-efficient edge AI applications. |
| Přístupová URL adresa: | https://doi.org/10.1002/aelm.202400335 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1002/aelm.202400335# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=2199160X&ISBN=&volume=11&issue=3&date=20250101&spage=&pages=&title=Advanced Electronic Materials&atitle=A%20Reconfigurable%20Ferroelectric%20Transistor%20as%20An%20Ultra-Scaled%20Cell%20for%20Low-Power%20In-Memory%20Data%20Processing&aulast=Zhu%2C%20Zhongyunshen&id=DOI:10.1002/aelm.202400335 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhu%20Z Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.5e8c4599.f88f.4b45.b314.ce500fd046e5 RelevancyScore: 1065 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Zhu%2C+Zhongyunshen%22">Zhu, Zhongyunshen</searchLink><br /><searchLink fieldCode="AR" term="%22Persson%2C+Anton+E%2EO%2E%22">Persson, Anton E.O.</searchLink><br /><searchLink fieldCode="AR" term="%22Wernersson%2C+Lars+Erik%22">Wernersson, Lars Erik</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Advanced Electronic Materials</i>. 11(3) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Engineering%22">Computer Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorteknik%22">Datorteknik</searchLink> – Name: Abstract Label: Description Group: Ab Data: Compact in-memory computing architectures are desirable to embed artificial intelligence (AI) in resource-restricted edge devices. However, current technologies face limitations in both the area and energy efficiency. Here, a reconfigurable ferroelectric tunnel field-effect transistor (ferro-TFET) is presented that can be used as an ultra-scaled cell for low-power in-memory data processing. A gate-all-around ferroelectric film is integrated on a vertical nanowire TFET with a gate/source overlapped channel, enabling non-volatilely reconfigurable anti-ambipolarity by programming the ferroelectric polarization state. By considering the stored polarization state and reading voltage as inputs, an XNOR operation is achieved in a single-gate ferro-TFET. It is shown that the ferro-TFETs can be implemented in a crossbar array for convolutional frequency filtering whose performance can be evaluated by an impulse-response method considering the effect of device-to-device variation based on statistics. Benefiting from the miniaturized footprint, non-volatility, and low-power operation, ferro-TFETs show promises as a one-transistor in-memory computing cell for area- and energy-efficient edge AI applications. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1002/aelm.202400335" linkWindow="_blank">https://doi.org/10.1002/aelm.202400335</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.5e8c4599.f88f.4b45.b314.ce500fd046e5 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1002/aelm.202400335 Languages: – Text: English Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer Engineering Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorteknik Type: general Titles: – TitleFull: A Reconfigurable Ferroelectric Transistor as An Ultra-Scaled Cell for Low-Power In-Memory Data Processing Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Zhu, Zhongyunshen – PersonEntity: Name: NameFull: Persson, Anton E.O. – PersonEntity: Name: NameFull: Wernersson, Lars Erik – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Electrical and Information Technology, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för elektro- och informationsteknik, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 2199160X – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 11 – Type: issue Value: 3 Titles: – TitleFull: Advanced Electronic Materials Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science