A parameter ASIP for the quadratic family

Saved in:
Bibliographic Details
Title: A parameter ASIP for the quadratic family
Authors: Aspenberg, Magnus, Baladi, Viviane, Persson, T. O.M.A.S.
Contributors: Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Dynamical systems, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, Dynamiska system, Originator
Source: Ergodic Theory and Dynamical Systems. 45(3):663-703
Subject Terms: Natural Sciences, Mathematical Sciences, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys
Description: Consider the quadratic family Ta(x) = ax(1-x) for x ∈ [0, 1] and mixing Collet-Eckmann (CE) parameters a ∈ (2, 4). For bounded φ, set φ˜a := φ-∫ φ dμa, with μa the unique acim of Ta, and put (σa(φ))2 := ∫ φ˜2a dμa + 2Σ i>0 ∫ phi;˜a(φ˜a o T1a) dμa. For any mixing Misiurewicz parameter a∗, we find a positive measure set Ω∗ of mixing CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder φ with σa∗ (φ) ≠ 0, there exists ϵφ > 0 such that, for normalized Lebesgue measure on Ω∗ ∩ [a∗-ϵφ, a∗ + ϵφ], the functions ξi(a) = φ˜a(T i+1 a (1/2))/σa(φ) satisfy an almost sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann's proof for piecewise expanding maps. We need to introduce a variant of Benedicks-Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773-844].
Access URL: https://doi.org/10.1017/etds.2024.67
Database: SwePub
Description
Abstract:Consider the quadratic family Ta(x) = ax(1-x) for x ∈ [0, 1] and mixing Collet-Eckmann (CE) parameters a ∈ (2, 4). For bounded φ, set φ˜a := φ-∫ φ dμa, with μa the unique acim of Ta, and put (σa(φ))2 := ∫ φ˜2a dμa + 2Σ i>0 ∫ phi;˜a(φ˜a o T1a) dμa. For any mixing Misiurewicz parameter a∗, we find a positive measure set Ω∗ of mixing CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder φ with σa∗ (φ) ≠ 0, there exists ϵφ > 0 such that, for normalized Lebesgue measure on Ω∗ ∩ [a∗-ϵφ, a∗ + ϵφ], the functions ξi(a) = φ˜a(T i+1 a (1/2))/σa(φ) satisfy an almost sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann's proof for piecewise expanding maps. We need to introduce a variant of Benedicks-Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015), 773-844].
ISSN:01433857
14694417
DOI:10.1017/etds.2024.67