Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules
Uloženo v:
| Název: | Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules |
|---|---|
| Autoři: | Guo, Qingqing, Fang, Xianyong, Wang, Kaibing, Shi, Yuqing, Wang, Linbo, Zhang, Enming, Liu, Zhengyi |
| Přispěvatelé: | Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator |
| Zdroj: | IET Image Processing. 17(8):2503-2515 |
| Témata: | Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende, Bioinformatics (Computational Biology), Bioinformatik (Beräkningsbiologi) |
| Popis: | The large variations of polyp sizes and shapes and the close resemblances of polyps to their surroundings call for features with long-range information in rich scales and strong discrimination. This article proposes two parallel structured modules for building those features. One is the Transformer Inception module (TI) which applies Transformers with different reception fields in parallel to input features and thus enriches them with more long-range information in more scales. The other is the Local-Detail Augmentation module (LDA) which applies the spatial and channel attentions in parallel to each block and thus locally augments the features from two complementary dimensions for more object details. Integrating TI and LDA, a new Transformer encoder based framework, Parallel-Enhanced Network (PENet), is proposed, where LDA is specifically adopted twice in a coarse-to-fine way for accurate prediction. PENet is efficient in segmenting polyps with different sizes and shapes without the interference from the background tissues. Experimental comparisons with state-of-the-arts methods show its merits. |
| Přístupová URL adresa: | https://doi.org/10.1049/ipr2.12813 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1049/ipr2.12813# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=17519659&ISBN=&volume=17&issue=8&date=20230101&spage=2503&pages=2503-2515&title=IET Image Processing&atitle=Parallel%20matters%3A%20Efficient%20polyp%20segmentation%20with%20parallel%20structured%20feature%20augmentation%20modules&aulast=Guo%2C%20Qingqing&id=DOI:10.1049/ipr2.12813 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Guo%20Q Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.50b46a7c.3478.471d.8efe.6573ea0109b2 RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Guo%2C+Qingqing%22">Guo, Qingqing</searchLink><br /><searchLink fieldCode="AR" term="%22Fang%2C+Xianyong%22">Fang, Xianyong</searchLink><br /><searchLink fieldCode="AR" term="%22Wang%2C+Kaibing%22">Wang, Kaibing</searchLink><br /><searchLink fieldCode="AR" term="%22Shi%2C+Yuqing%22">Shi, Yuqing</searchLink><br /><searchLink fieldCode="AR" term="%22Wang%2C+Linbo%22">Wang, Linbo</searchLink><br /><searchLink fieldCode="AR" term="%22Zhang%2C+Enming%22">Zhang, Enming</searchLink><br /><searchLink fieldCode="AR" term="%22Liu%2C+Zhengyi%22">Liu, Zhengyi</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator – Name: TitleSource Label: Source Group: Src Data: <i>IET Image Processing</i>. 17(8):2503-2515 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink><br /><searchLink fieldCode="DE" term="%22Bioinformatics+%28Computational+Biology%29%22">Bioinformatics (Computational Biology)</searchLink><br /><searchLink fieldCode="DE" term="%22Bioinformatik+%28Beräkningsbiologi%29%22">Bioinformatik (Beräkningsbiologi)</searchLink> – Name: Abstract Label: Description Group: Ab Data: The large variations of polyp sizes and shapes and the close resemblances of polyps to their surroundings call for features with long-range information in rich scales and strong discrimination. This article proposes two parallel structured modules for building those features. One is the Transformer Inception module (TI) which applies Transformers with different reception fields in parallel to input features and thus enriches them with more long-range information in more scales. The other is the Local-Detail Augmentation module (LDA) which applies the spatial and channel attentions in parallel to each block and thus locally augments the features from two complementary dimensions for more object details. Integrating TI and LDA, a new Transformer encoder based framework, Parallel-Enhanced Network (PENet), is proposed, where LDA is specifically adopted twice in a coarse-to-fine way for accurate prediction. PENet is efficient in segmenting polyps with different sizes and shapes without the interference from the background tissues. Experimental comparisons with state-of-the-arts methods show its merits. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1049/ipr2.12813" linkWindow="_blank">https://doi.org/10.1049/ipr2.12813</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.50b46a7c.3478.471d.8efe.6573ea0109b2 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1049/ipr2.12813 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 13 StartPage: 2503 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer graphics and computer vision Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorgrafik och datorseende Type: general – SubjectFull: Bioinformatics (Computational Biology) Type: general – SubjectFull: Bioinformatik (Beräkningsbiologi) Type: general Titles: – TitleFull: Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Guo, Qingqing – PersonEntity: Name: NameFull: Fang, Xianyong – PersonEntity: Name: NameFull: Wang, Kaibing – PersonEntity: Name: NameFull: Shi, Yuqing – PersonEntity: Name: NameFull: Wang, Linbo – PersonEntity: Name: NameFull: Zhang, Enming – PersonEntity: Name: NameFull: Liu, Zhengyi – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 17519659 – Type: issn-print Value: 17519667 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 17 – Type: issue Value: 8 Titles: – TitleFull: IET Image Processing Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science