Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules

Uložené v:
Podrobná bibliografia
Názov: Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules
Autori: Guo, Qingqing, Fang, Xianyong, Wang, Kaibing, Shi, Yuqing, Wang, Linbo, Zhang, Enming, Liu, Zhengyi
Prispievatelia: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator
Zdroj: IET Image Processing. 17(8):2503-2515
Predmety: Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende, Bioinformatics (Computational Biology), Bioinformatik (Beräkningsbiologi)
Popis: The large variations of polyp sizes and shapes and the close resemblances of polyps to their surroundings call for features with long-range information in rich scales and strong discrimination. This article proposes two parallel structured modules for building those features. One is the Transformer Inception module (TI) which applies Transformers with different reception fields in parallel to input features and thus enriches them with more long-range information in more scales. The other is the Local-Detail Augmentation module (LDA) which applies the spatial and channel attentions in parallel to each block and thus locally augments the features from two complementary dimensions for more object details. Integrating TI and LDA, a new Transformer encoder based framework, Parallel-Enhanced Network (PENet), is proposed, where LDA is specifically adopted twice in a coarse-to-fine way for accurate prediction. PENet is efficient in segmenting polyps with different sizes and shapes without the interference from the background tissues. Experimental comparisons with state-of-the-arts methods show its merits.
Prístupová URL adresa: https://doi.org/10.1049/ipr2.12813
Databáza: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1049/ipr2.12813#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=17519659&ISBN=&volume=17&issue=8&date=20230101&spage=2503&pages=2503-2515&title=IET Image Processing&atitle=Parallel%20matters%3A%20Efficient%20polyp%20segmentation%20with%20parallel%20structured%20feature%20augmentation%20modules&aulast=Guo%2C%20Qingqing&id=DOI:10.1049/ipr2.12813
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Guo%20Q
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.50b46a7c.3478.471d.8efe.6573ea0109b2
RelevancyScore: 1034
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.77954101563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Guo%2C+Qingqing%22">Guo, Qingqing</searchLink><br /><searchLink fieldCode="AR" term="%22Fang%2C+Xianyong%22">Fang, Xianyong</searchLink><br /><searchLink fieldCode="AR" term="%22Wang%2C+Kaibing%22">Wang, Kaibing</searchLink><br /><searchLink fieldCode="AR" term="%22Shi%2C+Yuqing%22">Shi, Yuqing</searchLink><br /><searchLink fieldCode="AR" term="%22Wang%2C+Linbo%22">Wang, Linbo</searchLink><br /><searchLink fieldCode="AR" term="%22Zhang%2C+Enming%22">Zhang, Enming</searchLink><br /><searchLink fieldCode="AR" term="%22Liu%2C+Zhengyi%22">Liu, Zhengyi</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator<br />Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>IET Image Processing</i>. 17(8):2503-2515
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink><br /><searchLink fieldCode="DE" term="%22Bioinformatics+%28Computational+Biology%29%22">Bioinformatics (Computational Biology)</searchLink><br /><searchLink fieldCode="DE" term="%22Bioinformatik+%28Beräkningsbiologi%29%22">Bioinformatik (Beräkningsbiologi)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The large variations of polyp sizes and shapes and the close resemblances of polyps to their surroundings call for features with long-range information in rich scales and strong discrimination. This article proposes two parallel structured modules for building those features. One is the Transformer Inception module (TI) which applies Transformers with different reception fields in parallel to input features and thus enriches them with more long-range information in more scales. The other is the Local-Detail Augmentation module (LDA) which applies the spatial and channel attentions in parallel to each block and thus locally augments the features from two complementary dimensions for more object details. Integrating TI and LDA, a new Transformer encoder based framework, Parallel-Enhanced Network (PENet), is proposed, where LDA is specifically adopted twice in a coarse-to-fine way for accurate prediction. PENet is efficient in segmenting polyps with different sizes and shapes without the interference from the background tissues. Experimental comparisons with state-of-the-arts methods show its merits.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1049/ipr2.12813" linkWindow="_blank">https://doi.org/10.1049/ipr2.12813</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.50b46a7c.3478.471d.8efe.6573ea0109b2
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1049/ipr2.12813
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 13
        StartPage: 2503
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Computer graphics and computer vision
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Datorgrafik och datorseende
        Type: general
      – SubjectFull: Bioinformatics (Computational Biology)
        Type: general
      – SubjectFull: Bioinformatik (Beräkningsbiologi)
        Type: general
    Titles:
      – TitleFull: Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Guo, Qingqing
      – PersonEntity:
          Name:
            NameFull: Fang, Xianyong
      – PersonEntity:
          Name:
            NameFull: Wang, Kaibing
      – PersonEntity:
          Name:
            NameFull: Shi, Yuqing
      – PersonEntity:
          Name:
            NameFull: Wang, Linbo
      – PersonEntity:
          Name:
            NameFull: Zhang, Enming
      – PersonEntity:
          Name:
            NameFull: Liu, Zhengyi
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Medicine, Department of Clinical Sciences, Malmö, Diabetes - Islet Patophysiology, Lunds universitet, Medicinska fakulteten, Institutionen för kliniska vetenskaper, Malmö, Diabetes - öpatofysiologi, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 17519659
            – Type: issn-print
              Value: 17519667
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 17
            – Type: issue
              Value: 8
          Titles:
            – TitleFull: IET Image Processing
              Type: main
ResultId 1