Robust Predictive Motion Planning by Learning Obstacle Uncertainty

Uloženo v:
Podrobná bibliografie
Název: Robust Predictive Motion Planning by Learning Obstacle Uncertainty
Autoři: Zhou, Jian, Gao, Yulong, Johansson, Ola, Olofsson, Björn, Frisk, Erik
Přispěvatelé: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator
Zdroj: IEEE Transactions on Control Systems Technology. 33(3):1006-1020
Témata: Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Control Engineering, Teknik, Elektroteknik och elektronik, Reglerteknik
Popis: Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this article, an efficient, robust, and safe motion-planning algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming (LP) problem. The learned control set is used to compute forward reachable sets (FRSs) of obstacles that are less conservative than the worst case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. Themethod is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness.
Přístupová URL adresa: https://arxiv.org/abs/2403.06222
Databáze: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://arxiv.org/abs/2403.06222#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=10636536&ISBN=&volume=33&issue=3&date=20250101&spage=1006&pages=1006-1020&title=IEEE Transactions on Control Systems Technology&atitle=Robust%20Predictive%20Motion%20Planning%20by%20Learning%20Obstacle%20Uncertainty&aulast=Zhou%2C%20Jian&id=DOI:10.1109/TCST.2025.3533378
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhou%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.487e6d13.28ea.4b5d.9c4a.c14b97cf42ce
RelevancyScore: 1115
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1114.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Robust Predictive Motion Planning by Learning Obstacle Uncertainty
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhou%2C+Jian%22">Zhou, Jian</searchLink><br /><searchLink fieldCode="AR" term="%22Gao%2C+Yulong%22">Gao, Yulong</searchLink><br /><searchLink fieldCode="AR" term="%22Johansson%2C+Ola%22">Johansson, Ola</searchLink><br /><searchLink fieldCode="AR" term="%22Olofsson%2C+Björn%22">Olofsson, Björn</searchLink><br /><searchLink fieldCode="AR" term="%22Frisk%2C+Erik%22">Frisk, Erik</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>IEEE Transactions on Control Systems Technology</i>. 33(3):1006-1020
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+Engineering%22">Electrical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+Engineering%22">Electronic Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Engineering%22">Information Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Control+Engineering%22">Control Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Elektroteknik+och+elektronik%22">Elektroteknik och elektronik</searchLink><br /><searchLink fieldCode="DE" term="%22Reglerteknik%22">Reglerteknik</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this article, an efficient, robust, and safe motion-planning algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming (LP) problem. The learned control set is used to compute forward reachable sets (FRSs) of obstacles that are less conservative than the worst case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. Themethod is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://arxiv.org/abs/2403.06222" linkWindow="_blank">https://arxiv.org/abs/2403.06222</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.487e6d13.28ea.4b5d.9c4a.c14b97cf42ce
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/TCST.2025.3533378
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 1006
    Subjects:
      – SubjectFull: Engineering and Technology
        Type: general
      – SubjectFull: Electrical Engineering
        Type: general
      – SubjectFull: Electronic Engineering
        Type: general
      – SubjectFull: Information Engineering
        Type: general
      – SubjectFull: Control Engineering
        Type: general
      – SubjectFull: Teknik
        Type: general
      – SubjectFull: Elektroteknik och elektronik
        Type: general
      – SubjectFull: Reglerteknik
        Type: general
    Titles:
      – TitleFull: Robust Predictive Motion Planning by Learning Obstacle Uncertainty
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhou, Jian
      – PersonEntity:
          Name:
            NameFull: Gao, Yulong
      – PersonEntity:
          Name:
            NameFull: Johansson, Ola
      – PersonEntity:
          Name:
            NameFull: Olofsson, Björn
      – PersonEntity:
          Name:
            NameFull: Frisk, Erik
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 10636536
            – Type: issn-print
              Value: 15580865
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 33
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: IEEE Transactions on Control Systems Technology
              Type: main
ResultId 1