Robust Predictive Motion Planning by Learning Obstacle Uncertainty
Uloženo v:
| Název: | Robust Predictive Motion Planning by Learning Obstacle Uncertainty |
|---|---|
| Autoři: | Zhou, Jian, Gao, Yulong, Johansson, Ola, Olofsson, Björn, Frisk, Erik |
| Přispěvatelé: | Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator |
| Zdroj: | IEEE Transactions on Control Systems Technology. 33(3):1006-1020 |
| Témata: | Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Control Engineering, Teknik, Elektroteknik och elektronik, Reglerteknik |
| Popis: | Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this article, an efficient, robust, and safe motion-planning algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming (LP) problem. The learned control set is used to compute forward reachable sets (FRSs) of obstacles that are less conservative than the worst case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. Themethod is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness. |
| Přístupová URL adresa: | https://arxiv.org/abs/2403.06222 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://arxiv.org/abs/2403.06222# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=10636536&ISBN=&volume=33&issue=3&date=20250101&spage=1006&pages=1006-1020&title=IEEE Transactions on Control Systems Technology&atitle=Robust%20Predictive%20Motion%20Planning%20by%20Learning%20Obstacle%20Uncertainty&aulast=Zhou%2C%20Jian&id=DOI:10.1109/TCST.2025.3533378 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhou%20J Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.487e6d13.28ea.4b5d.9c4a.c14b97cf42ce RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Robust Predictive Motion Planning by Learning Obstacle Uncertainty – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Zhou%2C+Jian%22">Zhou, Jian</searchLink><br /><searchLink fieldCode="AR" term="%22Gao%2C+Yulong%22">Gao, Yulong</searchLink><br /><searchLink fieldCode="AR" term="%22Johansson%2C+Ola%22">Johansson, Ola</searchLink><br /><searchLink fieldCode="AR" term="%22Olofsson%2C+Björn%22">Olofsson, Björn</searchLink><br /><searchLink fieldCode="AR" term="%22Frisk%2C+Erik%22">Frisk, Erik</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator<br />Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Transactions on Control Systems Technology</i>. 33(3):1006-1020 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+Engineering%22">Electrical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+Engineering%22">Electronic Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Engineering%22">Information Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Control+Engineering%22">Control Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Elektroteknik+och+elektronik%22">Elektroteknik och elektronik</searchLink><br /><searchLink fieldCode="DE" term="%22Reglerteknik%22">Reglerteknik</searchLink> – Name: Abstract Label: Description Group: Ab Data: Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this article, an efficient, robust, and safe motion-planning algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming (LP) problem. The learned control set is used to compute forward reachable sets (FRSs) of obstacles that are less conservative than the worst case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. Themethod is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://arxiv.org/abs/2403.06222" linkWindow="_blank">https://arxiv.org/abs/2403.06222</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.487e6d13.28ea.4b5d.9c4a.c14b97cf42ce |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TCST.2025.3533378 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 15 StartPage: 1006 Subjects: – SubjectFull: Engineering and Technology Type: general – SubjectFull: Electrical Engineering Type: general – SubjectFull: Electronic Engineering Type: general – SubjectFull: Information Engineering Type: general – SubjectFull: Control Engineering Type: general – SubjectFull: Teknik Type: general – SubjectFull: Elektroteknik och elektronik Type: general – SubjectFull: Reglerteknik Type: general Titles: – TitleFull: Robust Predictive Motion Planning by Learning Obstacle Uncertainty Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Zhou, Jian – PersonEntity: Name: NameFull: Gao, Yulong – PersonEntity: Name: NameFull: Johansson, Ola – PersonEntity: Name: NameFull: Olofsson, Björn – PersonEntity: Name: NameFull: Frisk, Erik – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 10636536 – Type: issn-print Value: 15580865 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 33 – Type: issue Value: 3 Titles: – TitleFull: IEEE Transactions on Control Systems Technology Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science