Integration of the reptile search algorithm and the adaptive neuro-fuzzy inference system enhances standardized precipitation evapotranspiration index forecasting

Saved in:
Bibliographic Details
Title: Integration of the reptile search algorithm and the adaptive neuro-fuzzy inference system enhances standardized precipitation evapotranspiration index forecasting
Authors: Kayhomayoon, Zahra, Bahmani, Mohammad Javad, Ghordoyee Milan, Sami, Bazrafshan, Ommolbanin, Berndtsson, Ronny
Contributors: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator, Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator
Source: Scientific Reports. 15
Subject Terms: Natural Sciences, Earth and Related Environmental Sciences, Meteorology and Atmospheric Sciences, Naturvetenskap, Geovetenskap och relaterad miljövetenskap, Meteorologi och atmosfärsvetenskap
Description: A novel metaheuristic algorithm called the reptile search algorithm (RSA) was introduced in conjunction with artificial neural fuzzy inference system (ANFIS) for the estimation of standardized precipitation evapotranspiration index (SPEI). The model was tested in three different climates: arid and super-cold, semi-arid and cold, and semi-arid and moderate climate across Iran by combining meteorological indices (minimum temperature, maximum temperature, average temperature, precipitation, and potential evapotranspiration) and large-scale climate signals (North Atlantic Oscillation, Arctic Oscillation, Pacific Decadal Oscillation, and Southern Oscillation Index). The results of the ANFIS + RSA model were compared with those of the ANFIS + WOA and ANFIS + GWO models for evaluation. Based on the estimation results and error evaluation criteria, the performance of the ANFIS + RSA model is considered appropriate, showing a higher relative accuracy compared to ANFIS, ANFIS + GWO, and ANFIS + WOA. In semi-arid and moderate climates, the ANFIS + RSA model exhibited the highest prediction accuracy, with RMSE = 0.28, MAE = 0.20, CA = 0.19, and NASH = 0.91. In semi-arid and cold climates, the model's accuracy was slightly lower, with RMSE = 0.33, MAE = 0.23, CA = 0.23, and NASH = 0.85. In arid and super-cold climates, the model's accuracy remained relatively consistent, with RMSE = 0.24, MAE = 0.18, CA = 0.19, and NASH = 0.84. Furthermore, the promising results of the hybrid ANFIS + RSA model can be further evaluated in other regions and climates to assess its overall effectiveness.
Access URL: https://doi.org/10.1038/s41598-025-98772-9
Database: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1038/s41598-025-98772-9#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2045-2322[TA]+AND+[PG]+AND+2025[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=20452322&ISBN=&volume=15&issue=&date=20250426&spage=&pages=&title=Scientific Reports&atitle=Integration%20of%20the%20reptile%20search%20algorithm%20and%20the%20adaptive%20neuro-fuzzy%20inference%20system%20enhances%20standardized%20precipitation%20evapotranspiration%20index%20forecasting&aulast=Kayhomayoon%2C%20Zahra&id=DOI:10.1038/s41598-025-98772-9
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Kayhomayoon%20Z
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.3c988827.8bc0.4d99.9fce.676948764513
RelevancyScore: 1082
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1082.48889160156
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Integration of the reptile search algorithm and the adaptive neuro-fuzzy inference system enhances standardized precipitation evapotranspiration index forecasting
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Kayhomayoon%2C+Zahra%22">Kayhomayoon, Zahra</searchLink><br /><searchLink fieldCode="AR" term="%22Bahmani%2C+Mohammad+Javad%22">Bahmani, Mohammad Javad</searchLink><br /><searchLink fieldCode="AR" term="%22Ghordoyee+Milan%2C+Sami%22">Ghordoyee Milan, Sami</searchLink><br /><searchLink fieldCode="AR" term="%22Bazrafshan%2C+Ommolbanin%22">Bazrafshan, Ommolbanin</searchLink><br /><searchLink fieldCode="AR" term="%22Berndtsson%2C+Ronny%22">Berndtsson, Ronny</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator<br />Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator<br />Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Scientific Reports</i>. 15
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Earth+and+Related+Environmental+Sciences%22">Earth and Related Environmental Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Meteorology+and+Atmospheric+Sciences%22">Meteorology and Atmospheric Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Geovetenskap+och+relaterad+miljövetenskap%22">Geovetenskap och relaterad miljövetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Meteorologi+och+atmosfärsvetenskap%22">Meteorologi och atmosfärsvetenskap</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A novel metaheuristic algorithm called the reptile search algorithm (RSA) was introduced in conjunction with artificial neural fuzzy inference system (ANFIS) for the estimation of standardized precipitation evapotranspiration index (SPEI). The model was tested in three different climates: arid and super-cold, semi-arid and cold, and semi-arid and moderate climate across Iran by combining meteorological indices (minimum temperature, maximum temperature, average temperature, precipitation, and potential evapotranspiration) and large-scale climate signals (North Atlantic Oscillation, Arctic Oscillation, Pacific Decadal Oscillation, and Southern Oscillation Index). The results of the ANFIS + RSA model were compared with those of the ANFIS + WOA and ANFIS + GWO models for evaluation. Based on the estimation results and error evaluation criteria, the performance of the ANFIS + RSA model is considered appropriate, showing a higher relative accuracy compared to ANFIS, ANFIS + GWO, and ANFIS + WOA. In semi-arid and moderate climates, the ANFIS + RSA model exhibited the highest prediction accuracy, with RMSE = 0.28, MAE = 0.20, CA = 0.19, and NASH = 0.91. In semi-arid and cold climates, the model's accuracy was slightly lower, with RMSE = 0.33, MAE = 0.23, CA = 0.23, and NASH = 0.85. In arid and super-cold climates, the model's accuracy remained relatively consistent, with RMSE = 0.24, MAE = 0.18, CA = 0.19, and NASH = 0.84. Furthermore, the promising results of the hybrid ANFIS + RSA model can be further evaluated in other regions and climates to assess its overall effectiveness.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1038/s41598-025-98772-9" linkWindow="_blank">https://doi.org/10.1038/s41598-025-98772-9</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.3c988827.8bc0.4d99.9fce.676948764513
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41598-025-98772-9
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Earth and Related Environmental Sciences
        Type: general
      – SubjectFull: Meteorology and Atmospheric Sciences
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Geovetenskap och relaterad miljövetenskap
        Type: general
      – SubjectFull: Meteorologi och atmosfärsvetenskap
        Type: general
    Titles:
      – TitleFull: Integration of the reptile search algorithm and the adaptive neuro-fuzzy inference system enhances standardized precipitation evapotranspiration index forecasting
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Kayhomayoon, Zahra
      – PersonEntity:
          Name:
            NameFull: Bahmani, Mohammad Javad
      – PersonEntity:
          Name:
            NameFull: Ghordoyee Milan, Sami
      – PersonEntity:
          Name:
            NameFull: Bazrafshan, Ommolbanin
      – PersonEntity:
          Name:
            NameFull: Berndtsson, Ronny
      – PersonEntity:
          Name:
            NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MECW: The Middle East in the Contemporary World, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MECW: The Middle East in the Contemporary World, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Social Sciences, Departments of Administrative, Economic and Social Sciences, Centre for Advanced Middle Eastern Studies (CMES), Lunds universitet, Samhällsvetenskapliga fakulteten, Samhällsvetenskapliga institutioner och centrumbildningar, Centrum för Mellanösternstudier (CMES), Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Water Resources Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Teknisk vattenresurslära, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Water, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Vatten, Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 26
              M: 04
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 20452322
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Numbering:
            – Type: volume
              Value: 15
          Titles:
            – TitleFull: Scientific Reports
              Type: main
ResultId 1