DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention
Saved in:
| Title: | DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention |
|---|---|
| Authors: | Brebion, Vincent, Moreau, Julien, Davoine, Franck |
| Contributors: | Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator, Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator |
| Source: | Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025. :4898-4907 |
| Subject Terms: | Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende |
| Description: | Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA. |
| Access URL: | https://doi.org/10.1109/CVPRW67362.2025.00482 |
| Database: | SwePub |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science