DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention

Gespeichert in:
Bibliographische Detailangaben
Titel: DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention
Autoren: Brebion, Vincent, Moreau, Julien, Davoine, Franck
Weitere Verfasser: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator, Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator
Quelle: Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025. :4898-4907
Schlagwörter: Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende
Beschreibung: Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA.
Zugangs-URL: https://doi.org/10.1109/CVPRW67362.2025.00482
Datenbank: SwePub
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1109/CVPRW67362.2025.00482#
    Name: EDS - SwePub (s4221598)
    Category: fullText
    Text: View record in SwePub
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21607508&ISBN=&volume=&issue=&date=20250101&spage=4898&pages=4898-4907&title=Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025&atitle=DELTA%3A%20Dense%20Depth%20from%20Events%20and%20LiDAR%20Using%20Transformer%27s%20Attention&aulast=Brebion%2C%20Vincent&id=DOI:10.1109/CVPRW67362.2025.00482
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Brebion%20V
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsswe
DbLabel: SwePub
An: edsswe.oai.portal.research.lu.se.publications.3c02886f.d1b1.4e8a.9632.41ec060c9a3c
RelevancyScore: 1037
AccessLevel: 6
PubType: Conference
PubTypeId: conference
PreciseRelevancyScore: 1036.736328125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Brebion%2C+Vincent%22">Brebion, Vincent</searchLink><br /><searchLink fieldCode="AR" term="%22Moreau%2C+Julien%22">Moreau, Julien</searchLink><br /><searchLink fieldCode="AR" term="%22Davoine%2C+Franck%22">Davoine, Franck</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator<br />Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025</i>. :4898-4907
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA.
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/CVPRW67362.2025.00482" linkWindow="_blank">https://doi.org/10.1109/CVPRW67362.2025.00482</link>
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.3c02886f.d1b1.4e8a.9632.41ec060c9a3c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/CVPRW67362.2025.00482
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 10
        StartPage: 4898
    Subjects:
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Computer and Information Sciences
        Type: general
      – SubjectFull: Computer graphics and computer vision
        Type: general
      – SubjectFull: Naturvetenskap
        Type: general
      – SubjectFull: Data- och informationsvetenskap (Datateknik)
        Type: general
      – SubjectFull: Datorgrafik och datorseende
        Type: general
    Titles:
      – TitleFull: DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Brebion, Vincent
      – PersonEntity:
          Name:
            NameFull: Moreau, Julien
      – PersonEntity:
          Name:
            NameFull: Davoine, Franck
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator
      – PersonEntity:
          Name:
            NameFull: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 21607508
            – Type: issn-print
              Value: 21607516
            – Type: issn-locals
              Value: SWEPUB_FREE
            – Type: issn-locals
              Value: LU_SWEPUB
          Titles:
            – TitleFull: Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025
              Type: main
ResultId 1