DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention
Gespeichert in:
| Titel: | DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention |
|---|---|
| Autoren: | Brebion, Vincent, Moreau, Julien, Davoine, Franck |
| Weitere Verfasser: | Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator, Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator |
| Quelle: | Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025. :4898-4907 |
| Schlagwörter: | Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende |
| Beschreibung: | Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA. |
| Zugangs-URL: | https://doi.org/10.1109/CVPRW67362.2025.00482 |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1109/CVPRW67362.2025.00482# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=21607508&ISBN=&volume=&issue=&date=20250101&spage=4898&pages=4898-4907&title=Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025&atitle=DELTA%3A%20Dense%20Depth%20from%20Events%20and%20LiDAR%20Using%20Transformer%27s%20Attention&aulast=Brebion%2C%20Vincent&id=DOI:10.1109/CVPRW67362.2025.00482 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Brebion%20V Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.3c02886f.d1b1.4e8a.9632.41ec060c9a3c RelevancyScore: 1037 AccessLevel: 6 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 1036.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Brebion%2C+Vincent%22">Brebion, Vincent</searchLink><br /><searchLink fieldCode="AR" term="%22Moreau%2C+Julien%22">Moreau, Julien</searchLink><br /><searchLink fieldCode="AR" term="%22Davoine%2C+Franck%22">Davoine, Franck</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator<br />Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator – Name: TitleSource Label: Source Group: Src Data: <i>Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025</i>. :4898-4907 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink> – Name: Abstract Label: Description Group: Ab Data: Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/CVPRW67362.2025.00482" linkWindow="_blank">https://doi.org/10.1109/CVPRW67362.2025.00482</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.3c02886f.d1b1.4e8a.9632.41ec060c9a3c |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/CVPRW67362.2025.00482 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 10 StartPage: 4898 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer graphics and computer vision Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorgrafik och datorseende Type: general Titles: – TitleFull: DELTA: Dense Depth from Events and LiDAR Using Transformer's Attention Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Brebion, Vincent – PersonEntity: Name: NameFull: Moreau, Julien – PersonEntity: Name: NameFull: Davoine, Franck – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Computational Science for Health and Environment, Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Beräkningsvetenskap för hälsa och miljö, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 21607508 – Type: issn-print Value: 21607516 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Titles: – TitleFull: Proceedings - 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2025 Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science