Pixel-Perfect Structure-From-Motion With Featuremetric Refinement
Gespeichert in:
| Titel: | Pixel-Perfect Structure-From-Motion With Featuremetric Refinement |
|---|---|
| Autoren: | Sarlin, Paul Edouard, Lindenberger, Philipp, Larsson, Viktor, Pollefeys, Marc |
| Weitere Verfasser: | Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Mathematical Imaging Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, Mathematical Imaging Group, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Computer Vision and Machine Learning, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Datorseende och maskininlärning, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator |
| Quelle: | IEEE Transactions on Pattern Analysis and Machine Intelligence. 47(5):3298-3309 |
| Schlagwörter: | Natural Sciences, Computer and Information Sciences, Computer graphics and computer vision, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Datorgrafik och datorseende |
| Beschreibung: | Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this article, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a featuremetric error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale. |
| Zugangs-URL: | https://doi.org/10.1109/TPAMI.2023.3237269 |
| Datenbank: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1109/TPAMI.2023.3237269# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=01628828&ISBN=&volume=47&issue=5&date=20250101&spage=3298&pages=3298-3309&title=IEEE Transactions on Pattern Analysis and Machine Intelligence&atitle=Pixel-Perfect%20Structure-From-Motion%20With%20Featuremetric%20Refinement&aulast=Sarlin%2C%20Paul%20Edouard&id=DOI:10.1109/TPAMI.2023.3237269 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sarlin%20PE Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.3336ceae.3da4.4656.a4cc.221aa5f62130 RelevancyScore: 1115 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1114.736328125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Pixel-Perfect Structure-From-Motion With Featuremetric Refinement – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Sarlin%2C+Paul+Edouard%22">Sarlin, Paul Edouard</searchLink><br /><searchLink fieldCode="AR" term="%22Lindenberger%2C+Philipp%22">Lindenberger, Philipp</searchLink><br /><searchLink fieldCode="AR" term="%22Larsson%2C+Viktor%22">Larsson, Viktor</searchLink><br /><searchLink fieldCode="AR" term="%22Pollefeys%2C+Marc%22">Pollefeys, Marc</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator<br />Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Mathematical Imaging Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, Mathematical Imaging Group, Originator<br />Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Computer Vision and Machine Learning, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Datorseende och maskininlärning, Originator<br />Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator<br />Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>. 47(5):3298-3309 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+graphics+and+computer+vision%22">Computer graphics and computer vision</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Datorgrafik+och+datorseende%22">Datorgrafik och datorseende</searchLink> – Name: Abstract Label: Description Group: Ab Data: Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this article, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a featuremetric error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1109/TPAMI.2023.3237269" linkWindow="_blank">https://doi.org/10.1109/TPAMI.2023.3237269</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.3336ceae.3da4.4656.a4cc.221aa5f62130 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TPAMI.2023.3237269 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 12 StartPage: 3298 Subjects: – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Computer graphics and computer vision Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Datorgrafik och datorseende Type: general Titles: – TitleFull: Pixel-Perfect Structure-From-Motion With Featuremetric Refinement Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Sarlin, Paul Edouard – PersonEntity: Name: NameFull: Lindenberger, Philipp – PersonEntity: Name: NameFull: Larsson, Viktor – PersonEntity: Name: NameFull: Pollefeys, Marc – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Research groups at the Centre for Mathematical Sciences, Mathematical Imaging Group, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Forskargrupper vid Matematikcentrum, Mathematical Imaging Group, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics (Faculty of Engineering), Computer Vision and Machine Learning, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematik LTH, Datorseende och maskininlärning, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 01628828 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 47 – Type: issue Value: 5 Titles: – TitleFull: IEEE Transactions on Pattern Analysis and Machine Intelligence Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science