From Experimental Studies to Predictive Machine Learning Modelling: Polypropylene Fibre Reinforced Concrete
Saved in:
| Title: | From Experimental Studies to Predictive Machine Learning Modelling: Polypropylene Fibre Reinforced Concrete |
|---|---|
| Authors: | Bayat Pour, Mohsen |
| Contributors: | Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Structural Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Konstruktionsteknik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Circular Building Sector, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Cirkulär byggindustri, Originator |
| Source: | Results in Materials. 28 |
| Subject Terms: | Engineering and Technology, Civil Engineering, Building materials, Teknik, Samhällsbyggnadsteknik, Byggnadsmaterial, Mechanical Engineering, Solid and Structural Mechanics, Maskinteknik, Solid- och strukturmekanik |
| Description: | This study investigates the influence of polypropylene fibres (PF) on concrete performance across a finely resolved dosage spectrum (0.0–2.0% by cement mass, in 0.1% increments) using 2,100 laboratory specimens. The experimental programme evaluated compressive strength, tensile strength (flexural and splitting), modulus of elasticity, and water penetration depth. Predictive modelling was conducted using Random Forests (RF) and Support Vector Regression (SVR), trained and evaluated with simple cross-validation and benchmarked using mean absolute error (MAE) and coefficient of determination (R²). The results reveal distinct optima for strength indices and a threshold behaviour in permeability, with PF dosages between 0.2% and 0.6% balancing mechanical enhancement and substantial reductions in water penetration, although accompanied by a pronounced reduction in elastic modulus at very low PF contents. The RF models exhibited superior predictive performance, consistently outperforming SVR across properties. The experimental outcomes demonstrate that incorporating PF into the concrete mixture enhances its mechanical properties. However, the optimal fibre-to-cement ratios differ for various properties: compressive strength (0.3% to 0.4%), tensile strength (0.2% to 0.4%), modulus of elasticity (0.1%), and permeability (0.6%). The overall optimal fibre range is identified as 0.1% to 0.6%, which satisfies all specified criteria. Notably, the inclusion of PF results in a 60% increase in compressive strength, a 115% increase in tensile strength (bending test), a 288% increase in tensile strength (Brazilian test), a tenfold reduction in modulus of elasticity, and a twenty-fivefold reduction in permeability. |
| Access URL: | https://doi.org/10.1016/j.rinma.2025.100777 |
| Database: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1016/j.rinma.2025.100777# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=2590048X&ISBN=&volume=28&issue=&date=20251007&spage=&pages=&title=Results in Materials&atitle=From%20Experimental%20Studies%20to%20Predictive%20Machine%20Learning%20Modelling%3A%20Polypropylene%20Fibre%20Reinforced%20Concrete&aulast=Bayat%20Pour%2C%20Mohsen&id=DOI:10.1016/j.rinma.2025.100777 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Pour%20B Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.2b126449.fad7.48d0.a838.5b766cea11a9 RelevancyScore: 1124 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1123.89196777344 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: From Experimental Studies to Predictive Machine Learning Modelling: Polypropylene Fibre Reinforced Concrete – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Bayat+Pour%2C+Mohsen%22">Bayat Pour, Mohsen</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Structural Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Konstruktionsteknik, Originator<br />Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Circular Building Sector, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Cirkulär byggindustri, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Results in Materials</i>. 28 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Civil+Engineering%22">Civil Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Building+materials%22">Building materials</searchLink><br /><searchLink fieldCode="DE" term="%22Teknik%22">Teknik</searchLink><br /><searchLink fieldCode="DE" term="%22Samhällsbyggnadsteknik%22">Samhällsbyggnadsteknik</searchLink><br /><searchLink fieldCode="DE" term="%22Byggnadsmaterial%22">Byggnadsmaterial</searchLink><br /><searchLink fieldCode="DE" term="%22Mechanical+Engineering%22">Mechanical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Solid+and+Structural+Mechanics%22">Solid and Structural Mechanics</searchLink><br /><searchLink fieldCode="DE" term="%22Maskinteknik%22">Maskinteknik</searchLink><br /><searchLink fieldCode="DE" term="%22Solid-+och+strukturmekanik%22">Solid- och strukturmekanik</searchLink> – Name: Abstract Label: Description Group: Ab Data: This study investigates the influence of polypropylene fibres (PF) on concrete performance across a finely resolved dosage spectrum (0.0–2.0% by cement mass, in 0.1% increments) using 2,100 laboratory specimens. The experimental programme evaluated compressive strength, tensile strength (flexural and splitting), modulus of elasticity, and water penetration depth. Predictive modelling was conducted using Random Forests (RF) and Support Vector Regression (SVR), trained and evaluated with simple cross-validation and benchmarked using mean absolute error (MAE) and coefficient of determination (R²). The results reveal distinct optima for strength indices and a threshold behaviour in permeability, with PF dosages between 0.2% and 0.6% balancing mechanical enhancement and substantial reductions in water penetration, although accompanied by a pronounced reduction in elastic modulus at very low PF contents. The RF models exhibited superior predictive performance, consistently outperforming SVR across properties. The experimental outcomes demonstrate that incorporating PF into the concrete mixture enhances its mechanical properties. However, the optimal fibre-to-cement ratios differ for various properties: compressive strength (0.3% to 0.4%), tensile strength (0.2% to 0.4%), modulus of elasticity (0.1%), and permeability (0.6%). The overall optimal fibre range is identified as 0.1% to 0.6%, which satisfies all specified criteria. Notably, the inclusion of PF results in a 60% increase in compressive strength, a 115% increase in tensile strength (bending test), a 288% increase in tensile strength (Brazilian test), a tenfold reduction in modulus of elasticity, and a twenty-fivefold reduction in permeability. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1016/j.rinma.2025.100777" linkWindow="_blank">https://doi.org/10.1016/j.rinma.2025.100777</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.2b126449.fad7.48d0.a838.5b766cea11a9 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.rinma.2025.100777 Languages: – Text: English Subjects: – SubjectFull: Engineering and Technology Type: general – SubjectFull: Civil Engineering Type: general – SubjectFull: Building materials Type: general – SubjectFull: Teknik Type: general – SubjectFull: Samhällsbyggnadsteknik Type: general – SubjectFull: Byggnadsmaterial Type: general – SubjectFull: Mechanical Engineering Type: general – SubjectFull: Solid and Structural Mechanics Type: general – SubjectFull: Maskinteknik Type: general – SubjectFull: Solid- och strukturmekanik Type: general Titles: – TitleFull: From Experimental Studies to Predictive Machine Learning Modelling: Polypropylene Fibre Reinforced Concrete Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Bayat Pour, Mohsen – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Building and Environmental Technology, Division of Structural Engineering, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för bygg- och miljöteknologi, Avdelningen för Konstruktionsteknik, Originator – PersonEntity: Name: NameFull: Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Circular Building Sector, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Cirkulär byggindustri, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 07 M: 10 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 2590048X – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 28 Titles: – TitleFull: Results in Materials Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science