Unveiling the Local Fate of Charge Carriers in Halide Perovskite Thin Films via Correlation Clustering Imaging

Gespeichert in:
Bibliographische Detailangaben
Titel: Unveiling the Local Fate of Charge Carriers in Halide Perovskite Thin Films via Correlation Clustering Imaging
Autoren: Seth, Sudipta, Louis, Boris, Asano, Koki, Van Roy, Toon, Roeffaers, Maarten B.J., Debroye, Elke, Scheblykin, Ivan G., Vacha, Martin, Hofkens, Johan
Weitere Verfasser: Lund University, Faculty of Science, Department of Chemistry, Physical and theoretical chemistry, Chemical Physics, Lunds universitet, Naturvetenskapliga fakulteten, Kemiska institutionen, Enheten för fysikalisk och teoretisk kemi, Kemisk fysik, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator
Quelle: Chemical and Biomedical Imaging. 3(4):244-252
Schlagwörter: Natural Sciences, Physical Sciences, Condensed Matter Physics (including Material Physics, Nano Physics), Naturvetenskap, Fysik, Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik), Chemical Sciences, Materials Chemistry, Kemi, Materialkemi, Engineering and Technology, Materials Engineering, Manufacturing, Surface and Joining Technology, Teknik, Materialteknik, Bearbetnings, yt- och fogningsteknik
Beschreibung: As the field of metal halide perovskites matures, a range of compositionally different perovskite films has found a place in efficient optoelectronic devices. These films feature variable local structural stability, carrier diffusion, and recombination, while there is still a lack of easy-to-implement generic protocols for high-throughput characterization of these variable properties. Correlation clustering imaging (CLIM) is a recently developed tool that resolves peculiarities of local photophysics by assessing the dynamics of photoluminescence detected by wide-field optical microscopy. We demonstrate the capability of CLIM as a high-throughput characterization tool of perovskite films using MAPbI3 (MAPI) and triple cation mixed halide (TCMH) perovskites as examples where it resolves the interplay of carrier diffusion, recombination, and defect dynamics. We found significant differences in the appearance of metastable defect states in these two films. Despite a better surface quality and larger grain size, MAPI films showed more pronounced effects of fluctuating defect states than did TCMH films. As CLIM shows a significant difference between materials known to lead to different solar cell efficiencies, it can be considered a tool for quality control of thin films for perovskite optoelectronic devices.
Zugangs-URL: https://doi.org/10.1021/cbmi.4c00113
Datenbank: SwePub
Beschreibung
Abstract:As the field of metal halide perovskites matures, a range of compositionally different perovskite films has found a place in efficient optoelectronic devices. These films feature variable local structural stability, carrier diffusion, and recombination, while there is still a lack of easy-to-implement generic protocols for high-throughput characterization of these variable properties. Correlation clustering imaging (CLIM) is a recently developed tool that resolves peculiarities of local photophysics by assessing the dynamics of photoluminescence detected by wide-field optical microscopy. We demonstrate the capability of CLIM as a high-throughput characterization tool of perovskite films using MAPbI3 (MAPI) and triple cation mixed halide (TCMH) perovskites as examples where it resolves the interplay of carrier diffusion, recombination, and defect dynamics. We found significant differences in the appearance of metastable defect states in these two films. Despite a better surface quality and larger grain size, MAPI films showed more pronounced effects of fluctuating defect states than did TCMH films. As CLIM shows a significant difference between materials known to lead to different solar cell efficiencies, it can be considered a tool for quality control of thin films for perovskite optoelectronic devices.
ISSN:28323637
DOI:10.1021/cbmi.4c00113