The Re-mediation of Legacy and New Media on Twitter: A Six-Language Comparison of the European Social Media Discourse on Migration
Uloženo v:
| Název: | The Re-mediation of Legacy and New Media on Twitter: A Six-Language Comparison of the European Social Media Discourse on Migration |
|---|---|
| Autoři: | Farjam, Mike, Dutceac Segesten, Anamaria |
| Přispěvatelé: | Lund University, Lunds universitet, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator |
| Zdroj: | Social Science Computer Review. 42(5):1136-1159 |
| Témata: | Social Sciences, Political Science, Samhällsvetenskap, Statsvetenskap, Media and Communications, Medie, kommunikations, och informationsvetenskaper, Natural Sciences, Computer and Information Sciences, Natural Language Processing, Naturvetenskap, Data- och informationsvetenskap (Datateknik), Språkbehandling och datorlingvistik |
| Popis: | Scholarly literature has demonstrated that hybridity transforms both legacy and new media, but that this change is not even. We treat social media platforms as arenas of remediation, where users share and add their own context to information produced by both media subtypes and compare social media conversations about migration in six European languages that include links to either traditional or new media during 2015–2019. We use a mix of computational and statistical methods to analyze 3.5 million (re)tweets and 500,000 links shared within them. We identify the main differences in agenda setting power, function, and tone present within tweets that include links to legacy or new media. Our results show that discourses are similar across languages but clearly different when remediating legacy and new media. Trust in legacy media is correlated with higher proportion of shared links from legacy media and reversely related to the proportion of shared links from new media sources. Considering the volume and timingof the remediated content, we conclude that legacy media retains its agenda setting power. New media linked content tends to cover migration in association to subjects such as Islam or terrorism and to express strong critical opinions against migrants/refugees. The language used is more toxic than in legacy media linked content. The tweets remediating legacy media articles covered topics like domestic or European politics, causes of refugee arrivals and procedures to give them protection. Thus, legacy and new media remediated content differs in both tone and function: toxicity is low and factuality high for content linking to legacy media, with the reverse being true for new media remediations. |
| Přístupová URL adresa: | https://doi.org/10.1177/08944393241246101 |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1177/08944393241246101# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Farjam%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.portal.research.lu.se.publications.02773e9f.8a7c.4bb0.80a8.96a5a85a83eb RelevancyScore: 979 AccessLevel: 6 PubType: Review PubTypeId: review PreciseRelevancyScore: 979.415405273438 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: The Re-mediation of Legacy and New Media on Twitter: A Six-Language Comparison of the European Social Media Discourse on Migration – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Farjam%2C+Mike%22">Farjam, Mike</searchLink><br /><searchLink fieldCode="AR" term="%22Dutceac+Segesten%2C+Anamaria%22">Dutceac Segesten, Anamaria</searchLink> – Name: Author Label: Contributors Group: Au Data: Lund University, Lunds universitet, Originator<br />Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator – Name: TitleSource Label: Source Group: Src Data: <i>Social Science Computer Review</i>. 42(5):1136-1159 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Social+Sciences%22">Social Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Political+Science%22">Political Science</searchLink><br /><searchLink fieldCode="DE" term="%22Samhällsvetenskap%22">Samhällsvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Statsvetenskap%22">Statsvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Media+and+Communications%22">Media and Communications</searchLink><br /><searchLink fieldCode="DE" term="%22Medie%22">Medie</searchLink><br /><searchLink fieldCode="DE" term="%22kommunikations%22">kommunikations</searchLink><br /><searchLink fieldCode="DE" term="%22och+informationsvetenskaper%22">och informationsvetenskaper</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+and+Information+Sciences%22">Computer and Information Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Language+Processing%22">Natural Language Processing</searchLink><br /><searchLink fieldCode="DE" term="%22Naturvetenskap%22">Naturvetenskap</searchLink><br /><searchLink fieldCode="DE" term="%22Data-+och+informationsvetenskap+%28Datateknik%29%22">Data- och informationsvetenskap (Datateknik)</searchLink><br /><searchLink fieldCode="DE" term="%22Språkbehandling+och+datorlingvistik%22">Språkbehandling och datorlingvistik</searchLink> – Name: Abstract Label: Description Group: Ab Data: Scholarly literature has demonstrated that hybridity transforms both legacy and new media, but that this change is not even. We treat social media platforms as arenas of remediation, where users share and add their own context to information produced by both media subtypes and compare social media conversations about migration in six European languages that include links to either traditional or new media during 2015–2019. We use a mix of computational and statistical methods to analyze 3.5 million (re)tweets and 500,000 links shared within them. We identify the main differences in agenda setting power, function, and tone present within tweets that include links to legacy or new media. Our results show that discourses are similar across languages but clearly different when remediating legacy and new media. Trust in legacy media is correlated with higher proportion of shared links from legacy media and reversely related to the proportion of shared links from new media sources. Considering the volume and timingof the remediated content, we conclude that legacy media retains its agenda setting power. New media linked content tends to cover migration in association to subjects such as Islam or terrorism and to express strong critical opinions against migrants/refugees. The language used is more toxic than in legacy media linked content. The tweets remediating legacy media articles covered topics like domestic or European politics, causes of refugee arrivals and procedures to give them protection. Thus, legacy and new media remediated content differs in both tone and function: toxicity is low and factuality high for content linking to legacy media, with the reverse being true for new media remediations. – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doi.org/10.1177/08944393241246101" linkWindow="_blank">https://doi.org/10.1177/08944393241246101</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.portal.research.lu.se.publications.02773e9f.8a7c.4bb0.80a8.96a5a85a83eb |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1177/08944393241246101 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 24 StartPage: 1136 Subjects: – SubjectFull: Social Sciences Type: general – SubjectFull: Political Science Type: general – SubjectFull: Samhällsvetenskap Type: general – SubjectFull: Statsvetenskap Type: general – SubjectFull: Media and Communications Type: general – SubjectFull: Medie Type: general – SubjectFull: kommunikations Type: general – SubjectFull: och informationsvetenskaper Type: general – SubjectFull: Natural Sciences Type: general – SubjectFull: Computer and Information Sciences Type: general – SubjectFull: Natural Language Processing Type: general – SubjectFull: Naturvetenskap Type: general – SubjectFull: Data- och informationsvetenskap (Datateknik) Type: general – SubjectFull: Språkbehandling och datorlingvistik Type: general Titles: – TitleFull: The Re-mediation of Legacy and New Media on Twitter: A Six-Language Comparison of the European Social Media Discourse on Migration Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Farjam, Mike – PersonEntity: Name: NameFull: Dutceac Segesten, Anamaria – PersonEntity: Name: NameFull: Lund University, Lunds universitet, Originator – PersonEntity: Name: NameFull: Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-print Value: 08944393 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: LU_SWEPUB Numbering: – Type: volume Value: 42 – Type: issue Value: 5 Titles: – TitleFull: Social Science Computer Review Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science