Adaptive Basis Function Selection for Computationally Efficient Predictions

Uložené v:
Podrobná bibliografia
Názov: Adaptive Basis Function Selection for Computationally Efficient Predictions
Autori: Kullberg, Anton, Viset, Frida, Skog, Isaac, Hendeby, Gustaf
Zdroj: Wallenberg AI, Autonomous Systems and Software Program (WASP) IEEE Signal Processing Letters. 31:2130-2134
Predmety: Computational modeling, Predictive models, Adaptation models, Data models, Accuracy, Training data, Probabilistic logic, Adaptive signal processing, computational complexity, function approximation, Gaussian processes, WASP_publications
Popis: Basis Function (BF) expansions are a cornerstone of any engineer's toolbox for computational function approximation which shares connections with both neural networks and Gaussian processes. Even though BF expansions are an intuitive and straightforward model to use, they suffer from quadratic computational complexity in the number of BFs if the predictive variance is to be computed. We develop a method to automatically select the most important BFs for prediction in a sub-domain of the model domain. This significantly reduces the computational complexity of computing predictions while maintaining predictive accuracy. The proposed method is demonstrated using two numerical examples, where reductions up to 50-75% are possible without significantly reducing the predictive accuracy.
Popis súboru: electronic
Prístupová URL adresa: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-206535
https://liu.diva-portal.org/smash/get/diva2:1890083/FULLTEXT01.pdf
Databáza: SwePub
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.