Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis
Uloženo v:
| Název: | Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis |
|---|---|
| Patent Number: | 10189,003 |
| Datum vydání: | January 29, 2019 |
| Appl. No: | 15/485787 |
| Application Filed: | April 12, 2017 |
| Abstrakt: | Systems and methods for synthesizing nanocrystals using continuous, microwave-assisted, segmented flow reactor. |
| Inventors: | Oregon State University (Corvallis, OR, US) |
| Assignees: | OREGON STATE UNIVERSITY (Corvallis, OR, US) |
| Claim: | 1. A method for producing nanoparticles, comprising: providing a reactor having a fluid passageway extending therethrough and having a source of energy capable of being absorbed by and heating a polar fluid; providing both a polar fluid and a non-polar fluid in the fluid passageway, with at least one of the polar and non-polar fluids comprising a nanoparticle precursor therein; flowing the polar and nonpolar fluids through the fluid passageway; and exposing the polar fluid with sufficient energy from the energy source to heat the polar fluid and cause nucleation of the nanoparticle precursor to create nanoparticles, wherein the steps of flowing and exposing cooperate to prevent deposition of nanoparticles on the walls of the fluid passageway. |
| Claim: | 2. The method according to claim 1 , wherein the nanoparticle precursor is disposed in the polar fluid. |
| Claim: | 3. The method according to claim 1 , wherein the step of exposing the polar fluid with sufficient energy occurs while the polar fluid is flowing through the fluid passageway. |
| Claim: | 4. The method according to claim 1 , wherein the non-polar fluid is a gas. |
| Claim: | 5. The method according to claim 1 , wherein the polar fluid is exposed to energy from the energy source for a period of 5 seconds. |
| Claim: | 6. The method according to claim 1 , comprising maintaining the nanoparticles at a desired temperature for 5 to 30 minutes to promote additional growth of the nanoparticles. |
| Claim: | 7. The method according to claim 1 , wherein nanoparticles are of a similar size having a size distribution with a coefficient of variation of less than 15%. |
| Claim: | 8. The method according to claim 1 , wherein the steps of flowing and exposing cooperate to prevent sparking in the fluid passageway. |
| Patent References Cited: | 3202281 August 1965 Weston 5534328 July 1996 Ashmead 6458335 October 2002 Lemaitre 6676835 January 2004 OConnor 7252814 August 2007 DeMello 7470308 December 2008 Shiraishi 7507380 March 2009 Chang 7615169 November 2009 Strouse 7829059 November 2010 Guo 7846489 December 2010 Chang 8236599 August 2012 Chang 8414182 April 2013 Paul 8553333 October 2013 Chang 8622606 January 2014 Miller 8679587 March 2014 Chang 8753418 June 2014 Epshteyn 8801979 August 2014 Chang 9073761 July 2015 Palanisamy 2004/0025634 February 2004 Nakamura 2007/0227898 October 2007 Muller 2008/0108122 May 2008 Paul 2009/0295005 December 2009 Rauscher 2011/0288060 November 2011 Ruecroft 2012/0001356 January 2012 Chang 2012/0295406 November 2012 Numata 2013/0299745 November 2013 Mattoussi 2014/0264171 September 2014 Schut 2017/0044687 February 2017 Xu 2010 123359 November 2010 2013 103715 August 2014 2014153266 September 2014 |
| Other References: | S. E. Habas, H. A. S. Platt, M. F. A. M. van Hest and D. S. Ginley, Chem. Rev., 2010, 110, 6571. cited by applicant S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. Wiley-VCH, 2013, Chapters 5, 7, and 10. cited by applicant S. Jeong, B.-S. Lee, S. J. Ahn, K.H. Yoon, Y.-H. Sea, Y. Choi and B.-H. Ryu, Energy Environ. Sci., 2012, 5, 7539. cited by applicant S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 2003, 15, 3142. cited by applicant S. R. Caskey, A. G. Wong-Foy, and A. J. Matzger, “Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores,” J. Am. Chem. Soc., vol. 130, No. 33, pp. 10870-10871, Aug. 2008. cited by applicant S. Rojas, P. S. Wheatley, E. Quartapelle-Procopio, B. Gil, B. Marszalek, R. E. Morris, and E. Barea, “Metal-organic frameworks as potential multi-carriers of drugs,” CrystEngComm, vol. 15, No. 45, p. 9364, 2013. cited by applicant S. S. Kaye, A. Dailly, O. M. Yaghi, and J. R. Long, “Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn 4 O(1,4-benzenedicarboxylate) 3 (MOF-5),” J. Am. Chem. Soc., vol. 129, No. 46, pp. 14176-14177, Nov. 2007. cited by applicant S. Siebentritt, Sol. Energy Mater. Sol. Cells, 2011, 95, 1471. cited by applicant S. Zhang, L. Han, L. Li, J. Cheng, D. Yuan, and J. Luo, “A Highly Symmetric Metal-Organic Framework Based on a Propeller-Like Ru-Organic Metalloligand for Photocatalysis and Explosives Detection,” Cryst. Growth Des., vol. 13, No. 12, pp. 5466-5472, Dec. 2013. cited by applicant Spehar, R. L; Anderson, R. L.; Fiandt, J. T., Toxicity and bioaccumulation of cadmium and lead in aquatic Invertebrates. Environmental Pollution (1970) 1978,15 (3), 195-208. cited by applicant Speranskaya, E. S.; Beloglazova, N. V.; Abe, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I.; De Saeger, S.; Hens, Z., Hydrophilic, Bright CuInS2 Quantum Dots as Cd-free Fluorescent Labels in Quantitative Immunoassay. Langmuir 2014. cited by applicant T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, “MOF-74 building unit has a direct impact on toxic gas adsorption,” Chem. Eng. Sci., vol. 66, No. 2, pp. 163-170, Jan. 2011. cited by applicant Uehara, M.; Watanabe, K.; Tajiri, Y.; Nakamura, H.; Maeda, H., Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. The Journal of chemical physics 2008,129 (13), 134709. cited by applicant V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi and B. A. Korgel, Energy . Environ.Sci., 2010, 3, 1600. cited by applicant V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid and B. A. Korgel, Opt. Express, 2010, 18, A411. cited by applicant W. Wang, et al., “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Adv. Ener. Mater. 4, 1301465 (2014). cited by applicant W. Wang, S.-Y. Han, S.-J. Sung, D.-H. Kim and C.-H.Chang, Phys. Chem. Chem. Phys., 2012, 14, 11154. cited by applicant W. Wang, Y.-W. Su and C.-H. Chang, Sol. Energy Mater. Sol. Cells, 2011, 95 2616. cited by applicant W.-J. Wang, Y. Jiang, X.-Z.Lan, C. Wang, X.-M. Liu, B.-B. Wang, J.-W. Li, B. Yang and X.-N. Ding, Mater. Sci. Semicond. Process., 2012, 15, 467. cited by applicant Wei Xu, Kong Yong Liew, Hanfan Liu, Tao Huang, Chuntao Sun, Yanxi Zhao (2008), Microwave-assisted synthesis of nickel nanoparticles. Materials Letters62 (17-18): 2571-2573; doi:10.1016/j.matlet.2007.12.057. cited by applicant Wiles, C.; Watts, R, Continuous flow reactors, a tool for the modem synthetic chemist. Eur. J. Org. Chem. 2008,2008 (10), 1655-1671. cited by applicant Wu, K.; Wang, D., Temperature-dependent Raman investigation of CuInS2 with mixed phases of chalcopyrite and CuAu. physica status solidi (a) 2011,208 (12), 2730-2736. cited by applicant X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, and S. Deng, “Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation”, Microporous Mesoporous Mater., vol. 180, pp. 114-122, Nov. 2013. cited by applicant Y. Yin and A. P. Alivisatos, Nature, 2005, 437, 664. cited by applicant Y.-J. Chang, P. H. Mugdur, S.-Y. Han, A. A. Morrone, S. O. Ryu, T.-J. Lee, and C.-H. Chang (2006), NanocrystallineCdS MISFETs Fabricated by a Novel Continuous Flow Microreactor Electrochem. Solid-State Lett. 9 (5): G174-G177; doi:10.1149/1.2183847. cited by applicant Yen, Angewandte Chemie, 2005, 117, 5583. cited by applicant Yen, B.K.H., Stott, N.E, Jensen, K.F. and Bawendi, M.G. (2003), A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals. Adv. Mater., 15: 1858-1862. doi:10.1002/adma.200305162. cited by applicant Yu, K.; Ng, P.; Ouyang, J.; Zaman, M. B.; Abulrob, A.; Baral, T. N.; Fatehi, D.; Jakubek, Z. J.; Kingston, D.; Wu, X., Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Appl. Mater. Interfaces 2013,5 (8), 2870-2880. cited by applicant Yuan, Y.; Riehle, F.-S.; Gu, H.; Thomann, R.; Urban, G.; Kr??¼ger, M., Critical parameters for the scale-up synthesis of quantum dots. Journal of nanoscience and nanotechnology 2010,10 (9), 6041-6045. cited by applicant Z. R. Herm, E. D. Bloch, and J. R. Long, “Hydrocarbon Separations in Metal-Organic Frameworks,” Chem. Mater., vol. 26, No. 1, pp. 323-338, Jan. 2014. cited by applicant Zhong, H.; Lo, S.S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G. D., Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS nano 2010,4 (9), 5253-5262. cited by applicant Johann M. Köhler, Shuning Li and Andrea Knauer; Why is Micro Segmented Flow Particularly Promising for the Synthesis of Nanomaterials?; Chem. Eng. Technol. 2013, 36, No. 6, 887-899. cited by applicant Axel Günther, Saif A. Khan, Martina Thalmann§, Franz Trachsel§ and Klavs F. Jensen; Transport and reaction in microscale segmented gas—liquid flow; LabChip, 2004 ,4 ,278-286. cited by applicant A. Das, P. D. Southon, M. Zhao, C. J. Kepert, A. T. Harris, and D. M. D'Alessandro, “Carbon dioxide adsorption by physisorption and chemisorption interactions in piperazine-grafted Ni2(dobdc) (dobdc=1,4-dioxido-2,5-benzenedicarboxylate),” Dalton Trans., vol. 41, No. 38, p. 11739, 2012. cited by applicant A. R. Millward and O. M. Yaghi, “Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature,” J. Am. Chem. Soc., vol. 127, No. 51, pp. 17998-17999, Dec. 2005. cited by applicant A. Shavel, D. Cadavid, M. Ibanez, A. Carrete and A. Cabot, J. Am. Chem. Soc., 2011, 134, 1438. cited by applicant Abou-Hassan, A, Sandre, O. and Cabuil, V. (2010), Microfluidics in Inorganic Chemistry. AngewandteChemie International Edition, 49: 6268-6286. doi:10.1002/anie.200904285. cited by applicant Axel Gunther, Manish Jhunjhunwala, Martina Thalmann, Martin A. Schmidt, and Klays F. Jensen (2005), Micromixing of Miscible Liquids in Segmented Gas-Liquid Flow. Langmuir 2005 21 (4), 1547-1555. DOI: 10.1021/la0482406. cited by applicant B. Flynn, I. Braly, P. Glover, R.P. Oleksak, C. Durgan, G.S. Herman, Materials Letters, 107, 214-217 (2013). cited by applicant B. Flynn, W. Wang, C.-H. Chang, G.S. Herman, Physica Status Solidi A, 209, 2186-2194 (2012). cited by applicant B. J. Stanbery, Crit. Rev. Solid State Mater. Sci., 2002, 27, 73. cited by applicant B. Koo, R. N. Patel and B. A. Korgel, J. Am. Chem. Soc., 2009, 131, 3134. cited by applicant B. Li, Y. Xie, J. Huang and Y. Qian, Adv. Mater., 1999, 11, 1456. cited by applicant Bensebaa, F.; Durand, C.; Aouadou, A.; Scoles, L; Du, X.; Wang, D.; Le Page, Y., A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J. Nanopart. Res. 2010,12 (5), 1897-1903. cited by applicant Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010,2 (8), 1358-1374. cited by applicant C. J. Carmalt, D. E. Morrison and I. P. Parkin, J. Mater. Chem., 1998, 8, 2209. cited by applicant C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell and B. A. Korgel, Nano Lett., 2011, 11, 2560. cited by applicant C. Steinhagen, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, J. T. Harris, V. C. Holmberg and B. A. Korgel, ACS Appl. Mater. Interfaces, 2011, 3, 1781. cited by applicant C.-M. Lu, J. Liu, K. Xiao, and A. T. Harris, “Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles,” Chem. Eng. J., vol. 156, No. 2, pp. 465-470, Jan. 2010. cited by applicant Gastro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F., Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J. Phys. Chem. B 2004,108 (33), 12429-12435. cited by applicant Chih-Hung Chang, Brian K. Paul, Vincent T. Remcho, SundarAtre, James E. Hutchison (2008), Synthesis and post-processing of nanomaterials using microreaction technology. Journal of Nanoparticle Research, 10:965-980; doi: 10.1007/s11051-007-9355-y. cited by applicant D. Aldakov, A Lefrancois and P. Reiss, J. Mater. Chem. C, 2013, 1, 3756. cited by applicant D. B. Mitzi, Adv. Mater., 2009, 21, 3141. cited by applicant D. Saha, R. Zacharia, L. Lafi, D. Cossement, and R. Chahine, “Synthesis, characterization and hydrogen adsorption properties of metal-organic framework AI-TCBPB,” Int. J. Hydrog. Energy, vol. 37, No. 6, pp. 5100-5107, Mar. 2012. cited by applicant De Trizio, L; Prato, M.; Genovese, A.; Casu, A; Povia, M.; Simonutti, R.; Alcocer, M. J.; D'Andrea, C.; Tassone, F.; Manna, L, Strongly Fluorescent Quatemary Cu—In—Zn—S Nanocrystals Prepared from Cu1-x InS2 Nanocrystals by Partial Cation Exchange. Chem. Mater. 2012,24 (12), 2400-2406. cited by applicant E. Cassette, T. Pons, C. Bouet, M. Helle, L Bezdetnaya, F. Marchal and B. Dubertret, Chem. Mater.,2010, 22, 6117. cited by applicant E. Haque and S. H. Jhung, “Synthesis of isostructural metal-organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions,” Chem. Eng. J., vol. 173, No. 3, pp. 866-872, Oct. 2011. cited by applicant E. Haque, N. A. Khan, J. H. Park, and S. H. Jhung, “Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study,” Chem.—Eur. J., vol. 16, No. 3, pp. 1046-1052, Jan. 2010. cited by applicant Ekimov, A.; Onushchenko, A., Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF Pisma Redaktsiiu 1981,34, 363. cited by applicant Elinder, C., Cadmium as an environmental hazard. IARC scientific publications 1991, (118), 123-132. cited by applicant F. Bonino, S. Chavan, J. G. Vitillo, E Groppo, G. Agostini, C. Lamberti, P. D. C. Dietzel, C. Prestipino, and S. Bordiga, “Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO,” Chem. Mater., vol. 20, No. 15, pp. 4957-4968, Aug. 2008. cited by applicant Fitzmorris, R. C.; Pu, Y.-C.; Cooper, J. K.; Lin, Y.-F.; Hsu, Y.-J.; Li, Y.; Zhang, J. Z., Optical Properties and Exciton Dynamics of Alloyed Core/Shell/Shell CdxZn1-xSe/ZnSe/ZnS Quantum Dots. ACS Appl. Mater. Interfaces 2013,5 (8), 2893-2900. cited by applicant G.J. Supran, Y. Shirasaki, K.W. Song, J.M. Caruge, P.T. Kazlas, S. Coe-Sullivan, T.L. Andre, M.G. Bawendi and V. Bulovi?????, MRS Bulletin, 2013, 38, 703. cited by applicant Greg Schabas, Chih-Wei Wang, Ali Oskooei, Huda Yusuf, Matthew G. Moffitt, and David Sinton (2008), Formation and Shear-Induced Processing of Quantum Dot Colloidal Assemblies in a Multiphase Microfluidic Chip. Langmuir 24 (19): 10596-10603; Doi: 10.1021/la8022985. cited by applicant H. D. Jin and C.-H. Chang, J. Nanopart. Res., 2012, 14, 1180. cited by applicant H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, “The Chemistry and Applications of Metal-Organic Frameworks,” Science, vol. 341, No. 6149, pp. 1230444-1230444, Aug. 2013. cited by applicant H. W. Hillhouse and M. C. Beard, Curr. Opin. Colloid Interface Sci., 2009, 14, 245. cited by applicant H. Zhou, C.-J. Hsu, and Y. Yang, Energy Environ. Sci. 6, 2822-2838 (2013). cited by applicant H.Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang and Y. Li, Nanotechnology, 2007, 18, 025602. cited by applicant Hiroyuki Nakamura, Yoshiko Yamaguchi, Masaya Miyazaki, Hideaki Maeda, Masato Uehara, and Paul Mulvaney (2002), Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem. Commun. (23); 2844-2845. DOI: 10.1039/ 8208992K. cited by applicant Hostetler, E. B.; Kim, K.-J.; Oleksak, R. P.; Fitzmorris, R. C.; Peterson, D. A.; Chandran, P.; Chang, C.-H.; Paul, B. K.; Schut, D. M.; Herman, G. S., Synthesis of colloidal PbSe nanoparticles using a microwave-assisted segmented flow reactor. Mater. Lett. 2014,128, 54-59. cited by applicant Huanping Zhou et al., Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability, Energy Environ. Sci., 2014, 7, 998-1005. cited by applicant I. Gur, N. A. Fromer, M. L. Geier and A. P. Alivisatos, Science, 2005, 310, 462. cited by applicant J. A. Mason, M. Veenstra, and J. R. Long, “Evaluating metal-organic frameworks for natural gas storage,” Chem. Sci., vol. 5, No. 1, p. 32, 2014. cited by applicant J. J. Perry, S. L. Teich-McGoldrick, S. T. Meek, J. A. Greathouse, M. Haranczyk, and M. D. Allendorf, “Noble Gas Adsorption in Metal-Organic Frameworks Containing Open Metal Sites,” J. Phys. Chem. C, vol. 118, No. 22, pp. 11685-11698, Jun. 2014. cited by applicant J. Jean, S. Chang, P.R. Brown, J.J. Cheng, P. H. Rekemeyer, M.G. Bawendi, S. Grade? †}k andV. Bulovi?????, Adv. Mat., 2013, 25, 2790. cited by applicant J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts”, Chem. Soc. Rev., vol. 38, No. 5, p. 1450, 2009. cited by applicant J. Liu, A. I. Benin, A. M. B. Furtado, P. Jakubczak, R. R. Willis, and M. D. LeVan, “Stability Effects on Co 2 Adsorption for the DOBDC Series of Metal-Organic Frameworks,” Langmuir, vol. 27, No. 18, pp. 11451-11456, Sep. 2011. cited by applicant J. Liu, J. Tian, P. K. Thallapally, and B. P. McGrail, “Selective Co 2 Capture from Flue Gas Using Metal-Organic Frameworks'A Fixed Bed Study,” J. Phys. Chem. C, vol. 116, No. 17, pp. 9575-9581, May 2012. cited by applicant J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-Y. Su, “Applications of metal-organic frameworks in heterogeneous supramolecular catalysis,” Chem Soc Rev, vol. 43, No. 16, pp. 6011-6061, May 2014. cited by applicant J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis, and M. D. LeVan, “Co 2 /H 2 O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC,” Langmuir, vol. 26, No. 17, pp. 14301-14307, Sep. 2010. cited by applicant J. Park, J.Joo, S. G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 2007, 46, 4630. cited by applicant J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nat. Mater., 2004, 3, 891. cited by applicant J. Ren, T. Segakweng, H. W. Langmi, N. M. Musyoka, B. C. North, M. Mathe, and D. Bessarabov, “Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications,” Int J. Mater. Res., vol. 105, No. 5, pp. 516-519, 2014. cited by applicant J. Tang, S. Hinds, S. O. Kelly and E. H. Sargent, Chem. Mater., 2008, 20, 6906. cited by applicant J. Xu, C.-S. Lee, Y.-B. Tang, X. Chen, Z.-H. Chen, W.-J. Zhang, S.-T. Lee, W. Zhang and Z. Yang, ACS Nano, 2010, 4, 1845. cited by applicant J.-S. Lee, S. B. Halligudi, N.-H. Jang, D.-W. Hwang, J.-S. Chang, and Y.-K. Hwang, “Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene,” Bull. Korean Chem. Soc., vol. 31, No. 6, pp. 1489-1495, Jun. 2010. cited by applicant Jongen, N., Donnet, M., Bowen, P., LemaÃ?®tre, J., Hofmann, H., Schenk, R., Hofmann, C., Aoun-Habbache, M., Guillemet-Fritsch, S., Sarrias, J., Rousset, A., Viviani, M., Buscaglia, M.T., Buscaglia, V., Nanni, P., Testino, A. and Herguijuela, J.R. (2003), Development of a Continuous Segmented Flow Tubular Reactor and the “Scale-out” Concept—In Search of Perfect Powders. Chem. Eng. Technol., 26: 303-305. doi:10.1002/ceat.200390046. cited by applicant Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003,125 (36), 11100-11105. cited by applicant K.-J. Kim, R. P. Oleksak, E B. Hostetler, D. A. Peterson, P. Chandran, D. M. Schut, B. K. Paul, G. S. Herman, and C.-H. Chang, “Continuous Microwave-Assisted Gas-Liquid Segmented Flow Reactor for Controlled Nucleation and Growth of Nanocrystals,” Cryst. Growth Des., vol. 14, No. 11, pp. 5349-5355, Nov. 2014. cited by applicant K.-J. Kim, Y. J. Li, P. B. Kreider, C.-H. Chang, N. Wannenmacher, P. K. Thallapally, and H.-G. Ahn, “High-rate synthesis of Cu-BTC metal-organic frameworks,” Chem. Commun., vol. 49, No. 98, p. 11518, 2013. cited by applicant L. E. Kreno, K. Leong, O. K. Farha, M. Allendort, R. P. Van Duyne, and J. T. Hupp, “Metal-Organic Framework Materials as Chemical Sensors,” Chem. Rev., vol. 112, No. 2, pp. 1105-1125, Feb. 2012. cited by applicant L. Paseta, B. Seoane, D. Julve, V. SebastiÃ?Âin, C. Téllez, and J. Coronas, “Accelerating the Controlled Synthesis of Metal-Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor,” ACS Appl. Mater. Interfaces, vol. 5, No. 19, pp. 9405-9410, Oct. 2013. cited by applicant Li, D. and Komameni, S. (2006), Microwave-Assisted Polyol Process for Synthesis of Ni Nanoparticles. Journal of the American Ceramic Society, 89: 1510-1517. doi:10.1111/j.1551-2916.2006.00925.x. cited by applicant Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011,133 (5), 1176-1179. cited by applicant M. A. Malik, P. O'Brien and N. Revaprasadu, Adv. Mater., 1999, 11, 1441. cited by applicant M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613. cited by applicant M. Faustini, J. Kim, G.-Y. Jeong, J. Y. Kim, H. R. Moon, W.-S. Ahn, and D.-P. Kim, “Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets,” J. Am. Chem. Soc., vol. 135, No. 39, pp. 14619-14626, Oct. 2013. cited by applicant M. G. Panthani, V.Akhavan, B.Goodfellow, J. P. Schmidtke, L Dunn, A.Dodabalapur, P. F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770. cited by applicant M. Gimeno-Fabra, A. S. Munn, L. A. Stevens, T. C. Drage, D. M. Grant, R. J. Kashtiban, J. Sloan, E. Lester, and R. I. Walton, “Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing,” Chem. Commun., vol. 48, No. 86, p. 10642, 2012. cited by applicant M. Kar, R. Agrawal and H. W. Hillhouse, J. Am. Chem. Soc., 2011, 133, 17239. cited by applicant M. Kemell, M.Ritala and M.Leskela, Crit. Rev. Solid State Mater. Sci., 2005, 30, 1. cited by applicant M. Li and M. Dinc{hacek over (a)}, “Reductive Electrosynthesis of Crystalline Metal-Organic Frameworks,” J. Am. Chem. Soc., vol. 133, No. 33, pp. 12926-12929, Aug. 2011. cited by applicant M. Rubio-Martinez, M. P. Batten, A. Polyzos, K.-C. Carey, J. I. Mardel, K.-S. Lim, and M. R. Hill, “Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks,” Sci. Rep., vol. 4, Jun. 2014. cited by applicant M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stμck, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. Head-Gordon, C. M. Brown, and J. R. Long, “M 2 ( m -dobdc) (M=Mg, Mn, Fe, Co, Ni) Metal- Organic Frameworks Exhibiting Increased Charge Density and Enhanced H 2 Binding at the Open Metal Sites,” J. Am. Chem. Soc., vol. 136, No. 34, pp. 12119-12129, Aug. 2014. cited by applicant N. A. Khan and S. H. Jhung, “Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction,” Coord. Chem. Rev., Nov. 2014. cited by applicant N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans, D. De Vos, and J. Fransaer, “High pressure, high temperature electrochemical synthesis of metal-organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies,” J. Mater. Chem. A, vol. 1, No. 19, p. 5827, 2013. cited by applicant N. L. Rosi, “Hydrogen Storage in Microporous Metal-Organic Frameworks,” Science, vol. 300, No. 5622, pp. 1127-1129, May 2003. cited by applicant N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, and O. M. Yaghi, “Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units,” J. Am. Chem. Soc., vol. 127, No. 5, pp. 1504-1518, Feb. 2005. cited by applicant Nam, D.-E; Song, W.-S.; Yang, H., Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties. J. Colloid Interface Sci. 2011,361 (2), 491-496. cited by applicant O. Chen, H. Wei, A. Maurice, M. Bawendi and P. Reiss, MRS Bulletin, 2013, 38, 696. cited by applicant P. A. Bayliss, I. A. Ibarra, E Pérez, S. Yang, C. C. Tang, M. Poliakoff, and M. Schröder, “Synthesis of metal-organic frameworks by continuous flow,” Green Chem., vol. 16, No. 8, p. 3796, Jun. 2014. cited by applicant P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, and H. , “Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework,” Chem. Commun., No. 9, p. 959, 2006. cited by applicant P. D. C. Dietzel, P. A. Georgiev, J. Eckert, R. Blom, T. , and T. Unruh, “Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M2(dhtp) (CPO-27-M; M=Ni, Co, Mg),” Chem. Commun., vol. 16, No. 27, p. 4962, 2010. cited by applicant P. H. Mugdur,Y.-J. Chang, S-.Y. Han, Y-W. Su, A. A. Morrone,S. O. Ryu,T.-J. Lee,and C.-H. Chang (2007), A Comparison of Chemical Bath Deposition of CdS froma Batch Reactor and a Continuous-Flow Microreactor. Journal of The Electrochemical Society, 154(9): D482-D488; doi: 10.1149/1.2757012. cited by applicant P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-Organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater., vol. 9, No. 2, pp. 172-178, Feb. 2010. cited by applicant P. K. Thallapally, J. W. Grate, and R. K. Motkuri, “Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal,” Chem. Commun., vol. 48, No. 3, p. 347, 2012. cited by applicant P. Kanoo, A. C. Ghosh, S. T. Cyriac, and T. K. Maji, “A Metal-Organic Framework with Highly Polar Pore Surfaces: Selective CO2 Adsorption and Guest-Dependent On/Off Emission Properties,” Chem.—Eur. J., vol. 18, No. 1, pp. 237-244, Jan. 2012. cited by applicant P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J. Flemming, and K. S. Walton, “Effect of Water Adsorption on Retention of Structure and Surface Area of Metal-Organic Frameworks,” Ind. Eng. Chem. Res., vol. 51, No. 18, pp. 3513-6519, May 2012. cited by applicant P. M. Schoenecker, G. A. Belancik, B. E. Grabicka, and K. S. Walton, “Kinetics study and crystallization process design for scale-up of UiO-66-NH 2 synthesis,” AIChE J., vol. 59, No. 4, pp. 1255-1262, Apr. 2013. cited by applicant Park, J.; Kim, S.-W., CuInS 2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 2011,21 (11), 3745-3750. cited by applicant Peng, Z. A; Peng, X., Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 2002,124 (13), 3343-3353. cited by applicant Q. Guo, S. J. Kim, M.Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R.Agrawal and H. W. Hillhouse, Nano Lett., 2008, 8, 2982. cited by applicant Q, Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, and Y. He, “Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants,” Sci. Rep., vol. 3, Oct. 2013. cited by applicant R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H.-C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev., vol. 253, No. 23-24, pp. 3042-3066, Dec. 2009. cited by applicant R. P. Oleksak, B. T. Flynn, D. M. Schut, and G. S. Herman, “Microwave-assisted synthesis of CuInSe 2 nanoparticles in low-absorbing solvents: Microwave-assisted synthesis of CuInSe 2 nanoparticles,” Phys. Status Solidi A, vol. 211, No. 1, pp. 219-225, Jan. 2014. cited by applicant R. Plessius, R. Kromhout, A. L. D. Ramos, M. Ferbinteanu, M. C. Mittelmeijer-Hazeleger, R. Krishna, G. Rothenberg, and S. Tanase, “Highly Selective Water Adsorption in a Lanthanum Metal-Organic Framework,” Chem.—Eur. J., vol. 20, No. 26, pp. 7922-7925, Jun. 2014. cited by applicant Rossetti, R.; Nakahara, S.; Brus, L, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics 1983,79 (2), 1086-1088. cited by applicant S. Achmann, G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener, and R. Moos, “Metal-Organic Frameworks for Sensing Applications in the Gas Phase,” Sensors, vol. 9, No. 3, pp. 1574-1589, Mar. 2009. cited by applicant S. Cadot, L. Veyre, D. Luneau, D. Farrusseng, and E. Alessandra Quadrelli, “A water-based and high space-time yield synthetic route to MOF Ni 2 (dhtp) and its linker 2,5-dihydroxyterephthalic acid,” J Mater Chem A, vol. 2, No. 42, pp. 17757-17763, Jul. 2014. cited by applicant S. Chavan, F. Bonino, L. Valenzano, B. Civalleri, C. Lamberti, N. Acerbi, J. H. Cavka, M. Leistner, and S. Bordiga, “Fundamental Aspects of H 2 S Adsorption on CPO-27-Ni,” J. Phys. Chem. C, vol. 117, No. 30, pp. 15615-15622, Aug. 2013. cited by applicant S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini and L. Manna, J. Am. Chem. Soc., 2010, 132, 8912. cited by applicant |
| Primary Examiner: | Vanoy, Timothy C |
| Attorney, Agent or Firm: | Huan, Niels Dann, Dorman, Herrell and Skillman, P.C. |
| Přístupové číslo: | edspgr.10189003 |
| Databáze: | USPTO Patent Grants |
Buďte první, kdo okomentuje tento záznam!