Data Science on the Google Cloud Platform : Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning

Saved in:
Bibliographic Details
Title: Data Science on the Google Cloud Platform : Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning
Description: Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches.Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science.You'll learn how to:Automate and schedule data ingest, using an App Engine applicationCreate and populate a dashboard in Google Data StudioBuild a real-time analysis pipeline to carry out streaming analyticsConduct interactive data exploration with Google BigQueryCreate a Bayesian model on a Cloud Dataproc clusterBuild a logistic regression machine-learning model with SparkCompute time-aggregate features with a Cloud Dataflow pipelineCreate a high-performing prediction model with TensorFlowUse your deployed model as a microservice you can access from both batch and real-time pipelines
Authors: Valliappa Lakshmanan
Resource Type: eBook.
Subjects: Cloud computing, Real-time data processing, Computing platforms
Categories: COMPUTERS / Data Science / General, COMPUTERS / Database Administration & Management, COMPUTERS / Data Science / Data Modeling & Design
Database: eBook Index
Be the first to leave a comment!
You must be logged in first