‘dstidyverse’: An Implementation of TidyverseWithin the DataSHIELD Ecosystem [version 1; peer review: 2 approved]

Uložené v:
Podrobná bibliografia
Názov: ‘dstidyverse’: An Implementation of TidyverseWithin the DataSHIELD Ecosystem [version 1; peer review: 2 approved]
Autori: Eleanor Hyde, Demetris Avraam, Mariska Slofstra, Tim Cadman, Marije van der Geest, Morris Swertz, Erik Zwart, Stuart Wheater, Ruben Veenstra, Dick Postma, Niels Kikkert
Zdroj: F1000Research, Vol 14 (2025)
Informácie o vydavateľovi: F1000 Research Ltd, 2025.
Rok vydania: 2025
Zbierka: LCC:Medicine
LCC:Science
Predmety: datashield, federated analysis, tidyverse, data manipulation, eng, Medicine, Science
Popis: Background DataSHIELD is a mature, R-based federated learning platform that enables multi-site analysis without sharing individual participant data. While DataSHIELD includes many packages for data analysis, it lacks user-friendly data manipulation tools. Methods To address this gap, we developed dsTidyverse, an implementation of selected functions from the popular Tidyverse package within the DataSHIELD client-server architecture. Disclosure checks were implemented to prevent individual-level data leakage. Results This package provides functionality for selecting, renaming, and creating columns; conditional recoding; combining data frames by rows or columns; filtering and arranging rows; grouping and ungrouping data; and converting data frames to tibbles. Through examples, we demonstrate how dsTidyverse simplifies common data manipulation tasks within DataSHIELD. Conclusions By providing additional data manipulation functionality, dsTidyverse improves the user experience and analytical efficiency within DataSHIELD. The package is open-source and freely available on CRAN and GitHub, and welcomes further development: https://github.com/molgenis/ds-tidyverse.
Druh dokumentu: article
Popis súboru: electronic resource
Jazyk: English
ISSN: 2046-1402
Relation: https://f1000research.com/articles/14-606/v1; https://doaj.org/toc/2046-1402
DOI: 10.12688/f1000research.164345.1
Prístupová URL adresa: https://doaj.org/article/f3aaa23e01b148a08c3eb8a5e6aff4e0
Prístupové číslo: edsdoj.f3aaa23e01b148a08c3eb8a5e6aff4e0
Databáza: Directory of Open Access Journals
Popis
Abstrakt:Background DataSHIELD is a mature, R-based federated learning platform that enables multi-site analysis without sharing individual participant data. While DataSHIELD includes many packages for data analysis, it lacks user-friendly data manipulation tools. Methods To address this gap, we developed dsTidyverse, an implementation of selected functions from the popular Tidyverse package within the DataSHIELD client-server architecture. Disclosure checks were implemented to prevent individual-level data leakage. Results This package provides functionality for selecting, renaming, and creating columns; conditional recoding; combining data frames by rows or columns; filtering and arranging rows; grouping and ungrouping data; and converting data frames to tibbles. Through examples, we demonstrate how dsTidyverse simplifies common data manipulation tasks within DataSHIELD. Conclusions By providing additional data manipulation functionality, dsTidyverse improves the user experience and analytical efficiency within DataSHIELD. The package is open-source and freely available on CRAN and GitHub, and welcomes further development: https://github.com/molgenis/ds-tidyverse.
ISSN:20461402
DOI:10.12688/f1000research.164345.1