tidysdm: Leveraging the flexibility of tidymodels for species distribution modelling in R

Uložené v:
Podrobná bibliografia
Názov: tidysdm: Leveraging the flexibility of tidymodels for species distribution modelling in R
Autori: Michela Leonardi, Margherita Colucci, Andrea Vittorio Pozzi, Eleanor M. L. Scerri, Andrea Manica
Zdroj: Methods in Ecology and Evolution, Vol 15, Iss 10, Pp 1789-1795 (2024)
Informácie o vydavateľovi: Wiley, 2024.
Rok vydania: 2024
Zbierka: LCC:Ecology
LCC:Evolution
Predmety: biogeography, paleoecology, R package, species distribution modelling, tidyverse, Ecology, QH540-549.5, Evolution, QH359-425
Popis: Abstract In species distribution modelling (SDM), it is common practice to explore multiple machine learning (ML) algorithms and combine their results into ensembles. In R, many implementations of different ML algorithms are available but, as they were mostly developed independently, they often use inconsistent syntax and data structures. For this reason, repeating an analysis with multiple algorithms and combining their results can be challenging. Specialised SDM packages solve this problem by providing a simpler, unified interface by wrapping the original functions to tackle each specific requirement. However, creating and maintaining such interfaces is time‐consuming, and with this approach, the user cannot easily integrate other methods that may become available. Here, we present tidysdm, an R package that solves this problem by taking advantage of the tidymodels universe. tidymodels provide standardised grammar, data structures and modelling interfaces, and a well‐documented infrastructure to integrate new algorithms and metrics. The wide adoption of tidymodels means that most ML algorithms and metrics are already integrated, and the user can add additional ones. Moreover, because of the broad adoption of tidymodels, new statistical approaches tend to be implemented quickly, making them easily integrated into existing pipelines and analyses. tidysdm takes advantage of the tidymodels universe to provide a flexible and fully customisable pipeline to fit SDM. It includes SDM‐specific algorithms and metrics, and methods to facilitate the use of spatial data within tidymodels. Additionally, tidysdm is the first software that natively allows SDM to be performed using data from different periods, expanding the availability of SDM for scholars working in palaeontology, archaeology, palaeobiology, palaeoecology and other disciplines focussing on the past.
Druh dokumentu: article
Popis súboru: electronic resource
Jazyk: English
ISSN: 2041-210X
Relation: https://doaj.org/toc/2041-210X
DOI: 10.1111/2041-210X.14406
Prístupová URL adresa: https://doaj.org/article/9e0ef1728b6c40da99e09d20d7b9f9f9
Prístupové číslo: edsdoj.9e0ef1728b6c40da99e09d20d7b9f9f9
Databáza: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doaj.org/article/9e0ef1728b6c40da99e09d20d7b9f9f9
    Name: EDS - DOAJ (s4221598)
    Category: fullText
    Text: View record in DOAJ
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=2041210X&ISBN=&volume=15&issue=10&date=20241001&spage=1789&pages=1789-1795&title=Methods in Ecology and Evolution&atitle=tidysdm%3A%20Leveraging%20the%20flexibility%20of%20tidymodels%20for%20species%20distribution%20modelling%20in%20R&aulast=Michela%20Leonardi&id=DOI:10.1111/2041-210X.14406
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Leonardi%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.9e0ef1728b6c40da99e09d20d7b9f9f9
RelevancyScore: 1020
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1020.49700927734
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: tidysdm: Leveraging the flexibility of tidymodels for species distribution modelling in R
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Michela+Leonardi%22">Michela Leonardi</searchLink><br /><searchLink fieldCode="AR" term="%22Margherita+Colucci%22">Margherita Colucci</searchLink><br /><searchLink fieldCode="AR" term="%22Andrea+Vittorio+Pozzi%22">Andrea Vittorio Pozzi</searchLink><br /><searchLink fieldCode="AR" term="%22Eleanor+M%2E+L%2E+Scerri%22">Eleanor M. L. Scerri</searchLink><br /><searchLink fieldCode="AR" term="%22Andrea+Manica%22">Andrea Manica</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Methods in Ecology and Evolution, Vol 15, Iss 10, Pp 1789-1795 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Wiley, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Ecology<br />LCC:Evolution
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22biogeography%22">biogeography</searchLink><br /><searchLink fieldCode="DE" term="%22paleoecology%22">paleoecology</searchLink><br /><searchLink fieldCode="DE" term="%22R+package%22">R package</searchLink><br /><searchLink fieldCode="DE" term="%22species+distribution+modelling%22">species distribution modelling</searchLink><br /><searchLink fieldCode="DE" term="%22tidyverse%22">tidyverse</searchLink><br /><searchLink fieldCode="DE" term="%22Ecology%22">Ecology</searchLink><br /><searchLink fieldCode="DE" term="%22QH540-549%2E5%22">QH540-549.5</searchLink><br /><searchLink fieldCode="DE" term="%22Evolution%22">Evolution</searchLink><br /><searchLink fieldCode="DE" term="%22QH359-425%22">QH359-425</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract In species distribution modelling (SDM), it is common practice to explore multiple machine learning (ML) algorithms and combine their results into ensembles. In R, many implementations of different ML algorithms are available but, as they were mostly developed independently, they often use inconsistent syntax and data structures. For this reason, repeating an analysis with multiple algorithms and combining their results can be challenging. Specialised SDM packages solve this problem by providing a simpler, unified interface by wrapping the original functions to tackle each specific requirement. However, creating and maintaining such interfaces is time‐consuming, and with this approach, the user cannot easily integrate other methods that may become available. Here, we present tidysdm, an R package that solves this problem by taking advantage of the tidymodels universe. tidymodels provide standardised grammar, data structures and modelling interfaces, and a well‐documented infrastructure to integrate new algorithms and metrics. The wide adoption of tidymodels means that most ML algorithms and metrics are already integrated, and the user can add additional ones. Moreover, because of the broad adoption of tidymodels, new statistical approaches tend to be implemented quickly, making them easily integrated into existing pipelines and analyses. tidysdm takes advantage of the tidymodels universe to provide a flexible and fully customisable pipeline to fit SDM. It includes SDM‐specific algorithms and metrics, and methods to facilitate the use of spatial data within tidymodels. Additionally, tidysdm is the first software that natively allows SDM to be performed using data from different periods, expanding the availability of SDM for scholars working in palaeontology, archaeology, palaeobiology, palaeoecology and other disciplines focussing on the past.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2041-210X
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2041-210X
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1111/2041-210X.14406
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/9e0ef1728b6c40da99e09d20d7b9f9f9" linkWindow="_blank">https://doaj.org/article/9e0ef1728b6c40da99e09d20d7b9f9f9</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.9e0ef1728b6c40da99e09d20d7b9f9f9
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.9e0ef1728b6c40da99e09d20d7b9f9f9
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1111/2041-210X.14406
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 7
        StartPage: 1789
    Subjects:
      – SubjectFull: biogeography
        Type: general
      – SubjectFull: paleoecology
        Type: general
      – SubjectFull: R package
        Type: general
      – SubjectFull: species distribution modelling
        Type: general
      – SubjectFull: tidyverse
        Type: general
      – SubjectFull: Ecology
        Type: general
      – SubjectFull: QH540-549.5
        Type: general
      – SubjectFull: Evolution
        Type: general
      – SubjectFull: QH359-425
        Type: general
    Titles:
      – TitleFull: tidysdm: Leveraging the flexibility of tidymodels for species distribution modelling in R
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Michela Leonardi
      – PersonEntity:
          Name:
            NameFull: Margherita Colucci
      – PersonEntity:
          Name:
            NameFull: Andrea Vittorio Pozzi
      – PersonEntity:
          Name:
            NameFull: Eleanor M. L. Scerri
      – PersonEntity:
          Name:
            NameFull: Andrea Manica
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 10
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 2041210X
          Numbering:
            – Type: volume
              Value: 15
            – Type: issue
              Value: 10
          Titles:
            – TitleFull: Methods in Ecology and Evolution
              Type: main
ResultId 1