DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism
Uloženo v:
| Název: | DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism |
|---|---|
| Autoři: | Jiehui Ke, Renbo Luo, Guoliang Xu, Yuna Tan, Zhifeng Wu, Liufeng Xiao |
| Zdroj: | Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025) |
| Informace o vydavateli: | Nature Portfolio, 2025. |
| Rok vydání: | 2025 |
| Sbírka: | LCC:Medicine LCC:Science |
| Témata: | YOLOv9, Deep learning, Soil fauna, Object detection, Ecological monitoring, Medicine, Science |
| Popis: | Abstract Soil fauna play a critical role in maintaining ecosystem functions and assessing environmental health, making accurate and efficient detection essential. Therefore, this paper proposes an improved algorithm based on You Only Look Once (YOLO) v9, which enhances feature capture capability while reducing parameters by 33.6%. First, a dynamic local shuffle module (DLSConv) is proposed, which utilizes convolutions and adaptive shuffling, effectively enhancing information interaction and feature richness. Additionally, different efficient modules with multi-branch fusion structures, integrating DLSConv, are adopted for the Backbone and Neck to enhance feature extraction and fusion, while optimizing the feature maps fed into the detection head, thereby improving the network’s ability to extract features and detect targets. Ablation experiments demonstrate that the model achieves a 2.3% improvement in F-score and 1.8% increase in mean average precision (mAP)@50. On the soil fauna dataset, it attains 94.3% in mAP@75, significantly outperforming the baseline in challenging scenarios. These results highlight the model’s efficiency and reliability for soil fauna detection on resource-constrained devices. And this capability can significantly enhance ecological monitoring through scalable biodiversity assessment and empowers precision agriculture applications via actionable insights into soil health and faunal activity, underpinning sustainable land management practices. |
| Druh dokumentu: | article |
| Popis souboru: | electronic resource |
| Jazyk: | English |
| ISSN: | 2045-2322 |
| Relation: | https://doaj.org/toc/2045-2322 |
| DOI: | 10.1038/s41598-025-12058-8 |
| Přístupová URL adresa: | https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab |
| Přístupové číslo: | edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab |
| Databáze: | Directory of Open Access Journals |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab Name: EDS - DOAJ (s4221598) Category: fullText Text: View record in DOAJ – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2045-2322[TA]+AND+1[PG]+AND+2025[PDAT] Name: FREE - PubMed Central (ISSN based link) Category: fullText Text: Full Text Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif MouseOverText: Check this PubMed for the article full text. – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=20452322&ISBN=&volume=15&issue=1&date=20250801&spage=1&pages=1-16&title=Scientific Reports&atitle=DMM-YOLO%3A%20A%20high%20efficiency%20soil%20fauna%20detection%20model%20based%20on%20an%20adaptive%20dynamic%20shuffle%20mechanism&aulast=Jiehui%20Ke&id=DOI:10.1038/s41598-025-12058-8 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ke%20J Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab RelevancyScore: 1064 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.32006835938 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Jiehui+Ke%22">Jiehui Ke</searchLink><br /><searchLink fieldCode="AR" term="%22Renbo+Luo%22">Renbo Luo</searchLink><br /><searchLink fieldCode="AR" term="%22Guoliang+Xu%22">Guoliang Xu</searchLink><br /><searchLink fieldCode="AR" term="%22Yuna+Tan%22">Yuna Tan</searchLink><br /><searchLink fieldCode="AR" term="%22Zhifeng+Wu%22">Zhifeng Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Liufeng+Xiao%22">Liufeng Xiao</searchLink> – Name: TitleSource Label: Source Group: Src Data: Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Nature Portfolio, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Medicine<br />LCC:Science – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22YOLOv9%22">YOLOv9</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+learning%22">Deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22Soil+fauna%22">Soil fauna</searchLink><br /><searchLink fieldCode="DE" term="%22Object+detection%22">Object detection</searchLink><br /><searchLink fieldCode="DE" term="%22Ecological+monitoring%22">Ecological monitoring</searchLink><br /><searchLink fieldCode="DE" term="%22Medicine%22">Medicine</searchLink><br /><searchLink fieldCode="DE" term="%22Science%22">Science</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract Soil fauna play a critical role in maintaining ecosystem functions and assessing environmental health, making accurate and efficient detection essential. Therefore, this paper proposes an improved algorithm based on You Only Look Once (YOLO) v9, which enhances feature capture capability while reducing parameters by 33.6%. First, a dynamic local shuffle module (DLSConv) is proposed, which utilizes convolutions and adaptive shuffling, effectively enhancing information interaction and feature richness. Additionally, different efficient modules with multi-branch fusion structures, integrating DLSConv, are adopted for the Backbone and Neck to enhance feature extraction and fusion, while optimizing the feature maps fed into the detection head, thereby improving the network’s ability to extract features and detect targets. Ablation experiments demonstrate that the model achieves a 2.3% improvement in F-score and 1.8% increase in mean average precision (mAP)@50. On the soil fauna dataset, it attains 94.3% in mAP@75, significantly outperforming the baseline in challenging scenarios. These results highlight the model’s efficiency and reliability for soil fauna detection on resource-constrained devices. And this capability can significantly enhance ecological monitoring through scalable biodiversity assessment and empowers precision agriculture applications via actionable insights into soil health and faunal activity, underpinning sustainable land management practices. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2045-2322 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/2045-2322 – Name: DOI Label: DOI Group: ID Data: 10.1038/s41598-025-12058-8 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab" linkWindow="_blank">https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1038/s41598-025-12058-8 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 16 StartPage: 1 Subjects: – SubjectFull: YOLOv9 Type: general – SubjectFull: Deep learning Type: general – SubjectFull: Soil fauna Type: general – SubjectFull: Object detection Type: general – SubjectFull: Ecological monitoring Type: general – SubjectFull: Medicine Type: general – SubjectFull: Science Type: general Titles: – TitleFull: DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Jiehui Ke – PersonEntity: Name: NameFull: Renbo Luo – PersonEntity: Name: NameFull: Guoliang Xu – PersonEntity: Name: NameFull: Yuna Tan – PersonEntity: Name: NameFull: Zhifeng Wu – PersonEntity: Name: NameFull: Liufeng Xiao IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 08 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 20452322 Numbering: – Type: volume Value: 15 – Type: issue Value: 1 Titles: – TitleFull: Scientific Reports Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science