DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism

Uloženo v:
Podrobná bibliografie
Název: DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism
Autoři: Jiehui Ke, Renbo Luo, Guoliang Xu, Yuna Tan, Zhifeng Wu, Liufeng Xiao
Zdroj: Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025)
Informace o vydavateli: Nature Portfolio, 2025.
Rok vydání: 2025
Sbírka: LCC:Medicine
LCC:Science
Témata: YOLOv9, Deep learning, Soil fauna, Object detection, Ecological monitoring, Medicine, Science
Popis: Abstract Soil fauna play a critical role in maintaining ecosystem functions and assessing environmental health, making accurate and efficient detection essential. Therefore, this paper proposes an improved algorithm based on You Only Look Once (YOLO) v9, which enhances feature capture capability while reducing parameters by 33.6%. First, a dynamic local shuffle module (DLSConv) is proposed, which utilizes convolutions and adaptive shuffling, effectively enhancing information interaction and feature richness. Additionally, different efficient modules with multi-branch fusion structures, integrating DLSConv, are adopted for the Backbone and Neck to enhance feature extraction and fusion, while optimizing the feature maps fed into the detection head, thereby improving the network’s ability to extract features and detect targets. Ablation experiments demonstrate that the model achieves a 2.3% improvement in F-score and 1.8% increase in mean average precision (mAP)@50. On the soil fauna dataset, it attains 94.3% in mAP@75, significantly outperforming the baseline in challenging scenarios. These results highlight the model’s efficiency and reliability for soil fauna detection on resource-constrained devices. And this capability can significantly enhance ecological monitoring through scalable biodiversity assessment and empowers precision agriculture applications via actionable insights into soil health and faunal activity, underpinning sustainable land management practices.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-025-12058-8
Přístupová URL adresa: https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab
Přístupové číslo: edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab
Databáze: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab
    Name: EDS - DOAJ (s4221598)
    Category: fullText
    Text: View record in DOAJ
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2045-2322[TA]+AND+1[PG]+AND+2025[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=20452322&ISBN=&volume=15&issue=1&date=20250801&spage=1&pages=1-16&title=Scientific Reports&atitle=DMM-YOLO%3A%20A%20high%20efficiency%20soil%20fauna%20detection%20model%20based%20on%20an%20adaptive%20dynamic%20shuffle%20mechanism&aulast=Jiehui%20Ke&id=DOI:10.1038/s41598-025-12058-8
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ke%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab
RelevancyScore: 1064
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.32006835938
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Jiehui+Ke%22">Jiehui Ke</searchLink><br /><searchLink fieldCode="AR" term="%22Renbo+Luo%22">Renbo Luo</searchLink><br /><searchLink fieldCode="AR" term="%22Guoliang+Xu%22">Guoliang Xu</searchLink><br /><searchLink fieldCode="AR" term="%22Yuna+Tan%22">Yuna Tan</searchLink><br /><searchLink fieldCode="AR" term="%22Zhifeng+Wu%22">Zhifeng Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Liufeng+Xiao%22">Liufeng Xiao</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Nature Portfolio, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Medicine<br />LCC:Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22YOLOv9%22">YOLOv9</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+learning%22">Deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22Soil+fauna%22">Soil fauna</searchLink><br /><searchLink fieldCode="DE" term="%22Object+detection%22">Object detection</searchLink><br /><searchLink fieldCode="DE" term="%22Ecological+monitoring%22">Ecological monitoring</searchLink><br /><searchLink fieldCode="DE" term="%22Medicine%22">Medicine</searchLink><br /><searchLink fieldCode="DE" term="%22Science%22">Science</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract Soil fauna play a critical role in maintaining ecosystem functions and assessing environmental health, making accurate and efficient detection essential. Therefore, this paper proposes an improved algorithm based on You Only Look Once (YOLO) v9, which enhances feature capture capability while reducing parameters by 33.6%. First, a dynamic local shuffle module (DLSConv) is proposed, which utilizes convolutions and adaptive shuffling, effectively enhancing information interaction and feature richness. Additionally, different efficient modules with multi-branch fusion structures, integrating DLSConv, are adopted for the Backbone and Neck to enhance feature extraction and fusion, while optimizing the feature maps fed into the detection head, thereby improving the network’s ability to extract features and detect targets. Ablation experiments demonstrate that the model achieves a 2.3% improvement in F-score and 1.8% increase in mean average precision (mAP)@50. On the soil fauna dataset, it attains 94.3% in mAP@75, significantly outperforming the baseline in challenging scenarios. These results highlight the model’s efficiency and reliability for soil fauna detection on resource-constrained devices. And this capability can significantly enhance ecological monitoring through scalable biodiversity assessment and empowers precision agriculture applications via actionable insights into soil health and faunal activity, underpinning sustainable land management practices.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2045-2322
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2045-2322
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1038/s41598-025-12058-8
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab" linkWindow="_blank">https://doaj.org/article/c61a61ad31e64b0b8c8ab8d757cb02ab</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.61a61ad31e64b0b8c8ab8d757cb02ab
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41598-025-12058-8
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 16
        StartPage: 1
    Subjects:
      – SubjectFull: YOLOv9
        Type: general
      – SubjectFull: Deep learning
        Type: general
      – SubjectFull: Soil fauna
        Type: general
      – SubjectFull: Object detection
        Type: general
      – SubjectFull: Ecological monitoring
        Type: general
      – SubjectFull: Medicine
        Type: general
      – SubjectFull: Science
        Type: general
    Titles:
      – TitleFull: DMM-YOLO: A high efficiency soil fauna detection model based on an adaptive dynamic shuffle mechanism
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Jiehui Ke
      – PersonEntity:
          Name:
            NameFull: Renbo Luo
      – PersonEntity:
          Name:
            NameFull: Guoliang Xu
      – PersonEntity:
          Name:
            NameFull: Yuna Tan
      – PersonEntity:
          Name:
            NameFull: Zhifeng Wu
      – PersonEntity:
          Name:
            NameFull: Liufeng Xiao
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 08
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 20452322
          Numbering:
            – Type: volume
              Value: 15
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Scientific Reports
              Type: main
ResultId 1