Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
Uloženo v:
| Název: | Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm |
|---|---|
| Autoři: | Zhaoze Li, Xiaoguang Guo, Guanghui Fan, Yueming Deng, Renke Kang, Xuefei Wang |
| Zdroj: | Micromachines, Vol 16, Iss 10, p 1121 (2025) |
| Informace o vydavateli: | MDPI AG, 2025. |
| Rok vydání: | 2025 |
| Sbírka: | LCC:Mechanical engineering and machinery |
| Témata: | single crystal diamond, chemical mechanical polishing, Archimedes optimization algorithm, roughness prediction model, Mechanical engineering and machinery, TJ1-1570 |
| Popis: | Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD. |
| Druh dokumentu: | article |
| Popis souboru: | electronic resource |
| Jazyk: | English |
| ISSN: | 2072-666X |
| Relation: | https://www.mdpi.com/2072-666X/16/10/1121; https://doaj.org/toc/2072-666X |
| DOI: | 10.3390/mi16101121 |
| Přístupová URL adresa: | https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba |
| Přístupové číslo: | edsdoj.5e9f1de331e4dd4b49a62027565b3ba |
| Databáze: | Directory of Open Access Journals |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba Name: EDS - DOAJ (s4221598) Category: fullText Text: View record in DOAJ – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2072-666X[TA]+AND+1121[PG]+AND+2025[PDAT] Name: FREE - PubMed Central (ISSN based link) Category: fullText Text: Full Text Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif MouseOverText: Check this PubMed for the article full text. – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=2072666X&ISBN=&volume=16&issue=10&date=20250901&spage=1121&pages=1121-1121&title=Micromachines&atitle=Prediction%20Model%20and%20Experimental%20Verification%20of%20Surface%20Roughness%20of%20Single%20Crystal%20Diamond%20Chemical%20Mechanical%20Polishing%20Based%20on%20Archimedes%20Optimization%20Algorithm&aulast=Zhaoze%20Li&id=DOI:10.3390/mi16101121 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Li%20Z Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.5e9f1de331e4dd4b49a62027565b3ba RelevancyScore: 1014 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1014.33337402344 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Zhaoze+Li%22">Zhaoze Li</searchLink><br /><searchLink fieldCode="AR" term="%22Xiaoguang+Guo%22">Xiaoguang Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Guanghui+Fan%22">Guanghui Fan</searchLink><br /><searchLink fieldCode="AR" term="%22Yueming+Deng%22">Yueming Deng</searchLink><br /><searchLink fieldCode="AR" term="%22Renke+Kang%22">Renke Kang</searchLink><br /><searchLink fieldCode="AR" term="%22Xuefei+Wang%22">Xuefei Wang</searchLink> – Name: TitleSource Label: Source Group: Src Data: Micromachines, Vol 16, Iss 10, p 1121 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: MDPI AG, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Mechanical engineering and machinery – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22single+crystal+diamond%22">single crystal diamond</searchLink><br /><searchLink fieldCode="DE" term="%22chemical+mechanical+polishing%22">chemical mechanical polishing</searchLink><br /><searchLink fieldCode="DE" term="%22Archimedes+optimization+algorithm%22">Archimedes optimization algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22roughness+prediction+model%22">roughness prediction model</searchLink><br /><searchLink fieldCode="DE" term="%22Mechanical+engineering+and+machinery%22">Mechanical engineering and machinery</searchLink><br /><searchLink fieldCode="DE" term="%22TJ1-1570%22">TJ1-1570</searchLink> – Name: Abstract Label: Description Group: Ab Data: Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2072-666X – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://www.mdpi.com/2072-666X/16/10/1121; https://doaj.org/toc/2072-666X – Name: DOI Label: DOI Group: ID Data: 10.3390/mi16101121 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba" linkWindow="_blank">https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.5e9f1de331e4dd4b49a62027565b3ba |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.5e9f1de331e4dd4b49a62027565b3ba |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/mi16101121 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 1 StartPage: 1121 Subjects: – SubjectFull: single crystal diamond Type: general – SubjectFull: chemical mechanical polishing Type: general – SubjectFull: Archimedes optimization algorithm Type: general – SubjectFull: roughness prediction model Type: general – SubjectFull: Mechanical engineering and machinery Type: general – SubjectFull: TJ1-1570 Type: general Titles: – TitleFull: Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Zhaoze Li – PersonEntity: Name: NameFull: Xiaoguang Guo – PersonEntity: Name: NameFull: Guanghui Fan – PersonEntity: Name: NameFull: Yueming Deng – PersonEntity: Name: NameFull: Renke Kang – PersonEntity: Name: NameFull: Xuefei Wang IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 09 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 2072666X Numbering: – Type: volume Value: 16 – Type: issue Value: 10 Titles: – TitleFull: Micromachines Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science