Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm

Uloženo v:
Podrobná bibliografie
Název: Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
Autoři: Zhaoze Li, Xiaoguang Guo, Guanghui Fan, Yueming Deng, Renke Kang, Xuefei Wang
Zdroj: Micromachines, Vol 16, Iss 10, p 1121 (2025)
Informace o vydavateli: MDPI AG, 2025.
Rok vydání: 2025
Sbírka: LCC:Mechanical engineering and machinery
Témata: single crystal diamond, chemical mechanical polishing, Archimedes optimization algorithm, roughness prediction model, Mechanical engineering and machinery, TJ1-1570
Popis: Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD.
Druh dokumentu: article
Popis souboru: electronic resource
Jazyk: English
ISSN: 2072-666X
Relation: https://www.mdpi.com/2072-666X/16/10/1121; https://doaj.org/toc/2072-666X
DOI: 10.3390/mi16101121
Přístupová URL adresa: https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba
Přístupové číslo: edsdoj.5e9f1de331e4dd4b49a62027565b3ba
Databáze: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba
    Name: EDS - DOAJ (s4221598)
    Category: fullText
    Text: View record in DOAJ
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=2072-666X[TA]+AND+1121[PG]+AND+2025[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=2072666X&ISBN=&volume=16&issue=10&date=20250901&spage=1121&pages=1121-1121&title=Micromachines&atitle=Prediction%20Model%20and%20Experimental%20Verification%20of%20Surface%20Roughness%20of%20Single%20Crystal%20Diamond%20Chemical%20Mechanical%20Polishing%20Based%20on%20Archimedes%20Optimization%20Algorithm&aulast=Zhaoze%20Li&id=DOI:10.3390/mi16101121
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Li%20Z
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.5e9f1de331e4dd4b49a62027565b3ba
RelevancyScore: 1014
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1014.33337402344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhaoze+Li%22">Zhaoze Li</searchLink><br /><searchLink fieldCode="AR" term="%22Xiaoguang+Guo%22">Xiaoguang Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Guanghui+Fan%22">Guanghui Fan</searchLink><br /><searchLink fieldCode="AR" term="%22Yueming+Deng%22">Yueming Deng</searchLink><br /><searchLink fieldCode="AR" term="%22Renke+Kang%22">Renke Kang</searchLink><br /><searchLink fieldCode="AR" term="%22Xuefei+Wang%22">Xuefei Wang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Micromachines, Vol 16, Iss 10, p 1121 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Mechanical engineering and machinery
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22single+crystal+diamond%22">single crystal diamond</searchLink><br /><searchLink fieldCode="DE" term="%22chemical+mechanical+polishing%22">chemical mechanical polishing</searchLink><br /><searchLink fieldCode="DE" term="%22Archimedes+optimization+algorithm%22">Archimedes optimization algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22roughness+prediction+model%22">roughness prediction model</searchLink><br /><searchLink fieldCode="DE" term="%22Mechanical+engineering+and+machinery%22">Mechanical engineering and machinery</searchLink><br /><searchLink fieldCode="DE" term="%22TJ1-1570%22">TJ1-1570</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2072-666X
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/2072-666X/16/10/1121; https://doaj.org/toc/2072-666X
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/mi16101121
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba" linkWindow="_blank">https://doaj.org/article/e5e9f1de331e4dd4b49a62027565b3ba</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.5e9f1de331e4dd4b49a62027565b3ba
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.5e9f1de331e4dd4b49a62027565b3ba
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/mi16101121
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 1
        StartPage: 1121
    Subjects:
      – SubjectFull: single crystal diamond
        Type: general
      – SubjectFull: chemical mechanical polishing
        Type: general
      – SubjectFull: Archimedes optimization algorithm
        Type: general
      – SubjectFull: roughness prediction model
        Type: general
      – SubjectFull: Mechanical engineering and machinery
        Type: general
      – SubjectFull: TJ1-1570
        Type: general
    Titles:
      – TitleFull: Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhaoze Li
      – PersonEntity:
          Name:
            NameFull: Xiaoguang Guo
      – PersonEntity:
          Name:
            NameFull: Guanghui Fan
      – PersonEntity:
          Name:
            NameFull: Yueming Deng
      – PersonEntity:
          Name:
            NameFull: Renke Kang
      – PersonEntity:
          Name:
            NameFull: Xuefei Wang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 09
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 2072666X
          Numbering:
            – Type: volume
              Value: 16
            – Type: issue
              Value: 10
          Titles:
            – TitleFull: Micromachines
              Type: main
ResultId 1