A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function
Uloženo v:
| Název: | A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function |
|---|---|
| Autoři: | K.K. Chaudhary, S.B. Rao |
| Zdroj: | Researches in Mathematics, Vol 32, Iss 1, Pp 16-32 (2024) |
| Informace o vydavateli: | Oles Honchar Dnipro National University, 2024. |
| Rok vydání: | 2024 |
| Sbírka: | LCC:Mathematics |
| Témata: | basic hypergeometric functions in one variable ${}_r \phi _s$, q-calculus and related topics, mittag-leffler functions and generalizations, integral transforms of special functions, Mathematics, QA1-939 |
| Popis: | This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between ${}_{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by ${}_{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus. |
| Druh dokumentu: | article |
| Popis souboru: | electronic resource |
| Jazyk: | English |
| ISSN: | 2664-4991 2664-5009 |
| Relation: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/414/414; https://doaj.org/toc/2664-4991; https://doaj.org/toc/2664-5009 |
| DOI: | 10.15421/242402 |
| Přístupová URL adresa: | https://doaj.org/article/4b9b8853aaa84d39b7cffa4f76f6b8e6 |
| Přístupové číslo: | edsdoj.4b9b8853aaa84d39b7cffa4f76f6b8e6 |
| Databáze: | Directory of Open Access Journals |
Buďte první, kdo okomentuje tento záznam!
Nájsť tento článok vo Web of Science