Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space

Saved in:
Bibliographic Details
Title: Calculation of the volume of simplex in barycentric coordinates in a multidimensional Euclidean space
Authors: M. A. Stepanova
Source: Научно-технический вестник информационных технологий, механики и оптики, Vol 25, Iss 5, Pp 996-998 (2025)
Publisher Information: ITMO University, 2025.
Publication Year: 2025
Collection: LCC:Information technology
Subject Terms: барицентрическая система координат, арицентрическая матрица, базисный симплекс, объем симплекса, Information technology, T58.5-58.64
Description: The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space.
Document Type: article
File Description: electronic resource
Language: English
Russian
ISSN: 2226-1494
2500-0373
Relation: https://ntv.elpub.ru/jour/article/view/529; https://doaj.org/toc/2226-1494; https://doaj.org/toc/2500-0373
DOI: 10.17586/2226-1494-2025-25-5-996-998
Access URL: https://doaj.org/article/ce3f5853bf6a4bfc9ac1b07444b4d88b
Accession Number: edsdoj.3f5853bf6a4bfc9ac1b07444b4d88b
Database: Directory of Open Access Journals
Description
Abstract:The paper describes three ways of calculating the k-dimensional volume of the k-dimensional simplex in the n-dimensional Euclidean space (n ≥ k) in the canonical barycentric coordinate system. The first method is to calculate for the n-dimensional simplex using the determinant of the barycentric matrix, the columns of which are the barycentric coordinates of the simplex vertices. The second method is to calculate the volume for k-dimensional simplex using the Cayley–Menger determinant through the lengths of the simplex edges which can be found from the barycentric coordinates of the vertices. The third method is to compute using a Gram determinant for a system of vectors constructed from the vertices of a given simplex in a (n + 1)-dimensional Euclidean space.
ISSN:22261494
25000373
DOI:10.17586/2226-1494-2025-25-5-996-998