A k-nearest text similarity-BiGRU approach for duration prediction of traffic accidents on expressways

Gespeichert in:
Bibliographische Detailangaben
Titel: A k-nearest text similarity-BiGRU approach for duration prediction of traffic accidents on expressways
Autoren: Jiaona Chen, Jin Zhang, Peng Wang, Yinli Jin
Quelle: Discover Applied Sciences, Vol 7, Iss 7, Pp 1-21 (2025)
Verlagsinformationen: Springer, 2025.
Publikationsjahr: 2025
Bestand: LCC:Science (General)
Schlagwörter: Traffic safety, Traffic accident duration, Text similarity, Text vector, BiGRU, Science (General), Q1-390
Beschreibung: Abstract Accurate prediction of traffic accident duration is critical for alleviating congestion and optimizing traffic management. This study proposes a k-nearest text similarity-BiGRU(Bidirectional Gated Recurrent Unit) approach to predict the duration of traffic accidents using textual records. Firstly, text vectors are extracted through a TF-IDF (Term Frequency-Inverse Document Frequency) model to vectorize textual descriptions. Secondly, the text similarity is quantified based on the extracted text vectors. Therefore, the independent variables for predicting accident duration are obtained through a text similarity evaluation, which serves as the feature vector. Finally, BiGRU networks are utilized for the regression prediction of traffic accident duration using the constructed feature vectors. In addition, the proposed approach is evaluated by the RMSE (root mean square error) and MAPE (mean absolute percent error) utilizing survey information gathered from expressways of Shaanxi Province in China. A rigorous analysis of the prediction performances is compared with different regression methods. Experimental results demonstrate that the k-nearest text similarity-BiGRU outperforms other models. Moreover, the RMSE and MAPE of the TF-IDF model based on BiGRU are 47.77 and 43.74%, respectively. In general, the MAPE is much better than that of regression prediction models employed in previous studies. This work validates the feasibility of text-driven feature engineering for predicting the duration of traffic accidents, and provides a robust tool for traffic management systems.
Publikationsart: article
Dateibeschreibung: electronic resource
Sprache: English
ISSN: 3004-9261
Relation: https://doaj.org/toc/3004-9261
DOI: 10.1007/s42452-025-07366-7
Zugangs-URL: https://doaj.org/article/36efc89ea6e74a47bc67939e7d9e3f3d
Dokumentencode: edsdoj.36efc89ea6e74a47bc67939e7d9e3f3d
Datenbank: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doaj.org/article/36efc89ea6e74a47bc67939e7d9e3f3d
    Name: EDS - DOAJ (s4221598)
    Category: fullText
    Text: View record in DOAJ
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=30049261&ISBN=&volume=7&issue=7&date=20250701&spage=1&pages=1-21&title=Discover Applied Sciences&atitle=A%20k-nearest%20text%20similarity-BiGRU%20approach%20for%20duration%20prediction%20of%20traffic%20accidents%20on%20expressways&aulast=Jiaona%20Chen&id=DOI:10.1007/s42452-025-07366-7
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Chen%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.36efc89ea6e74a47bc67939e7d9e3f3d
RelevancyScore: 1064
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.30676269531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A k-nearest text similarity-BiGRU approach for duration prediction of traffic accidents on expressways
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Jiaona+Chen%22">Jiaona Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Jin+Zhang%22">Jin Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Peng+Wang%22">Peng Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Yinli+Jin%22">Yinli Jin</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Discover Applied Sciences, Vol 7, Iss 7, Pp 1-21 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Springer, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Science (General)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Traffic+safety%22">Traffic safety</searchLink><br /><searchLink fieldCode="DE" term="%22Traffic+accident+duration%22">Traffic accident duration</searchLink><br /><searchLink fieldCode="DE" term="%22Text+similarity%22">Text similarity</searchLink><br /><searchLink fieldCode="DE" term="%22Text+vector%22">Text vector</searchLink><br /><searchLink fieldCode="DE" term="%22BiGRU%22">BiGRU</searchLink><br /><searchLink fieldCode="DE" term="%22Science+%28General%29%22">Science (General)</searchLink><br /><searchLink fieldCode="DE" term="%22Q1-390%22">Q1-390</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract Accurate prediction of traffic accident duration is critical for alleviating congestion and optimizing traffic management. This study proposes a k-nearest text similarity-BiGRU(Bidirectional Gated Recurrent Unit) approach to predict the duration of traffic accidents using textual records. Firstly, text vectors are extracted through a TF-IDF (Term Frequency-Inverse Document Frequency) model to vectorize textual descriptions. Secondly, the text similarity is quantified based on the extracted text vectors. Therefore, the independent variables for predicting accident duration are obtained through a text similarity evaluation, which serves as the feature vector. Finally, BiGRU networks are utilized for the regression prediction of traffic accident duration using the constructed feature vectors. In addition, the proposed approach is evaluated by the RMSE (root mean square error) and MAPE (mean absolute percent error) utilizing survey information gathered from expressways of Shaanxi Province in China. A rigorous analysis of the prediction performances is compared with different regression methods. Experimental results demonstrate that the k-nearest text similarity-BiGRU outperforms other models. Moreover, the RMSE and MAPE of the TF-IDF model based on BiGRU are 47.77 and 43.74%, respectively. In general, the MAPE is much better than that of regression prediction models employed in previous studies. This work validates the feasibility of text-driven feature engineering for predicting the duration of traffic accidents, and provides a robust tool for traffic management systems.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 3004-9261
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/3004-9261
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/s42452-025-07366-7
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/36efc89ea6e74a47bc67939e7d9e3f3d" linkWindow="_blank">https://doaj.org/article/36efc89ea6e74a47bc67939e7d9e3f3d</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.36efc89ea6e74a47bc67939e7d9e3f3d
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.36efc89ea6e74a47bc67939e7d9e3f3d
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s42452-025-07366-7
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 21
        StartPage: 1
    Subjects:
      – SubjectFull: Traffic safety
        Type: general
      – SubjectFull: Traffic accident duration
        Type: general
      – SubjectFull: Text similarity
        Type: general
      – SubjectFull: Text vector
        Type: general
      – SubjectFull: BiGRU
        Type: general
      – SubjectFull: Science (General)
        Type: general
      – SubjectFull: Q1-390
        Type: general
    Titles:
      – TitleFull: A k-nearest text similarity-BiGRU approach for duration prediction of traffic accidents on expressways
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Jiaona Chen
      – PersonEntity:
          Name:
            NameFull: Jin Zhang
      – PersonEntity:
          Name:
            NameFull: Peng Wang
      – PersonEntity:
          Name:
            NameFull: Yinli Jin
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 07
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 30049261
          Numbering:
            – Type: volume
              Value: 7
            – Type: issue
              Value: 7
          Titles:
            – TitleFull: Discover Applied Sciences
              Type: main
ResultId 1