Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction

Uložené v:
Podrobná bibliografia
Názov: Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction
Autori: Jiahui Lai, Cailian Cheng, Tiantian Liang, Leile Tang, Xinhua Guo, Xun Liu
Zdroj: Journal of Translational Medicine, Vol 23, Iss 1, Pp 1-13 (2025)
Informácie o vydavateľovi: BMC, 2025.
Rok vydania: 2025
Zbierka: LCC:Medicine
Predmety: Frailty assessment, Machine learning, Chronic kidney disease, Cardiovascular risk, Mortality prediction, Risk stratification, Medicine
Popis: Abstract Background Frailty significantly impacts health outcomes in aging populations, yet its routine assessment remains challenging due to the complexity and time-consuming nature of existing tools. This study aimed to develop and validate a clinically feasible, machine learning-based frailty assessment tool that balances predictive accuracy with implementation simplicity in real-world clinical settings. Methods We conducted a multi-cohort study leveraging data from the National Health and Nutrition Examination Survey (NHANES, n = 3,480), China Health and Retirement Longitudinal Study (CHARLS, n = 16,792), China Health and Nutrition Survey (CHNS, n = 6,035), and Sun Yat-sen University Third Affiliated Hospital CKD cohort (SYSU3 CKD, n = 2,264). Through systematic application of five complementary feature selection algorithms to 75 potential variables, followed by comparative evaluation of 12 machine learning approaches, we developed a parsimonious assessment tool for predicting frailty diagnosis, chronic kidney disease progression, cardiovascular events, and all-cause mortality. Results Our analysis identified a minimal set of just eight readily available clinical parameters— age, sex, body mass index (BMI), pulse pressure, creatinine, hemoglobin, and preparing meals difficulty and lifting/carrying difficulty—that demonstrated robust predictive power. The extreme gradient boosting (XGBoost) algorithm exhibited superior performance across training (AUC 0.963, 95% CI: 0.951–0.975), internal validation (AUC 0.940, 95% CI: 0.924–0.956), and external validation (AUC 0.850, 95% CI: 0.832–0.868) datasets. This model significantly outperformed traditional frailty indices in predicting CKD progression (AUC 0.916 vs. 0.701, p
Druh dokumentu: article
Popis súboru: electronic resource
Jazyk: English
ISSN: 1479-5876
Relation: https://doaj.org/toc/1479-5876
DOI: 10.1186/s12967-025-06728-4
Prístupová URL adresa: https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e
Prístupové číslo: edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e
Databáza: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e
    Name: EDS - DOAJ (s4221598)
    Category: fullText
    Text: View record in DOAJ
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=1479-5876[TA]+AND+1[PG]+AND+2025[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=14795876&ISBN=&volume=23&issue=1&date=20250801&spage=1&pages=1-13&title=Journal of Translational Medicine&atitle=Development%20and%20multi-cohort%20validation%20of%20a%20machine%20learning-based%20simplified%20frailty%20assessment%20tool%20for%20clinical%20risk%20prediction&aulast=Jiahui%20Lai&id=DOI:10.1186/s12967-025-06728-4
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lai%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e
RelevancyScore: 1064
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1064.32006835938
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Jiahui+Lai%22">Jiahui Lai</searchLink><br /><searchLink fieldCode="AR" term="%22Cailian+Cheng%22">Cailian Cheng</searchLink><br /><searchLink fieldCode="AR" term="%22Tiantian+Liang%22">Tiantian Liang</searchLink><br /><searchLink fieldCode="AR" term="%22Leile+Tang%22">Leile Tang</searchLink><br /><searchLink fieldCode="AR" term="%22Xinhua+Guo%22">Xinhua Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Xun+Liu%22">Xun Liu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Journal of Translational Medicine, Vol 23, Iss 1, Pp 1-13 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: BMC, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Medicine
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Frailty+assessment%22">Frailty assessment</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Chronic+kidney+disease%22">Chronic kidney disease</searchLink><br /><searchLink fieldCode="DE" term="%22Cardiovascular+risk%22">Cardiovascular risk</searchLink><br /><searchLink fieldCode="DE" term="%22Mortality+prediction%22">Mortality prediction</searchLink><br /><searchLink fieldCode="DE" term="%22Risk+stratification%22">Risk stratification</searchLink><br /><searchLink fieldCode="DE" term="%22Medicine%22">Medicine</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract Background Frailty significantly impacts health outcomes in aging populations, yet its routine assessment remains challenging due to the complexity and time-consuming nature of existing tools. This study aimed to develop and validate a clinically feasible, machine learning-based frailty assessment tool that balances predictive accuracy with implementation simplicity in real-world clinical settings. Methods We conducted a multi-cohort study leveraging data from the National Health and Nutrition Examination Survey (NHANES, n = 3,480), China Health and Retirement Longitudinal Study (CHARLS, n = 16,792), China Health and Nutrition Survey (CHNS, n = 6,035), and Sun Yat-sen University Third Affiliated Hospital CKD cohort (SYSU3 CKD, n = 2,264). Through systematic application of five complementary feature selection algorithms to 75 potential variables, followed by comparative evaluation of 12 machine learning approaches, we developed a parsimonious assessment tool for predicting frailty diagnosis, chronic kidney disease progression, cardiovascular events, and all-cause mortality. Results Our analysis identified a minimal set of just eight readily available clinical parameters— age, sex, body mass index (BMI), pulse pressure, creatinine, hemoglobin, and preparing meals difficulty and lifting/carrying difficulty—that demonstrated robust predictive power. The extreme gradient boosting (XGBoost) algorithm exhibited superior performance across training (AUC 0.963, 95% CI: 0.951–0.975), internal validation (AUC 0.940, 95% CI: 0.924–0.956), and external validation (AUC 0.850, 95% CI: 0.832–0.868) datasets. This model significantly outperformed traditional frailty indices in predicting CKD progression (AUC 0.916 vs. 0.701, p
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1479-5876
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/1479-5876
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1186/s12967-025-06728-4
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e" linkWindow="_blank">https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1186/s12967-025-06728-4
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 13
        StartPage: 1
    Subjects:
      – SubjectFull: Frailty assessment
        Type: general
      – SubjectFull: Machine learning
        Type: general
      – SubjectFull: Chronic kidney disease
        Type: general
      – SubjectFull: Cardiovascular risk
        Type: general
      – SubjectFull: Mortality prediction
        Type: general
      – SubjectFull: Risk stratification
        Type: general
      – SubjectFull: Medicine
        Type: general
    Titles:
      – TitleFull: Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Jiahui Lai
      – PersonEntity:
          Name:
            NameFull: Cailian Cheng
      – PersonEntity:
          Name:
            NameFull: Tiantian Liang
      – PersonEntity:
          Name:
            NameFull: Leile Tang
      – PersonEntity:
          Name:
            NameFull: Xinhua Guo
      – PersonEntity:
          Name:
            NameFull: Xun Liu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 08
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 14795876
          Numbering:
            – Type: volume
              Value: 23
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Journal of Translational Medicine
              Type: main
ResultId 1