Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction
Uložené v:
| Názov: | Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction |
|---|---|
| Autori: | Jiahui Lai, Cailian Cheng, Tiantian Liang, Leile Tang, Xinhua Guo, Xun Liu |
| Zdroj: | Journal of Translational Medicine, Vol 23, Iss 1, Pp 1-13 (2025) |
| Informácie o vydavateľovi: | BMC, 2025. |
| Rok vydania: | 2025 |
| Zbierka: | LCC:Medicine |
| Predmety: | Frailty assessment, Machine learning, Chronic kidney disease, Cardiovascular risk, Mortality prediction, Risk stratification, Medicine |
| Popis: | Abstract Background Frailty significantly impacts health outcomes in aging populations, yet its routine assessment remains challenging due to the complexity and time-consuming nature of existing tools. This study aimed to develop and validate a clinically feasible, machine learning-based frailty assessment tool that balances predictive accuracy with implementation simplicity in real-world clinical settings. Methods We conducted a multi-cohort study leveraging data from the National Health and Nutrition Examination Survey (NHANES, n = 3,480), China Health and Retirement Longitudinal Study (CHARLS, n = 16,792), China Health and Nutrition Survey (CHNS, n = 6,035), and Sun Yat-sen University Third Affiliated Hospital CKD cohort (SYSU3 CKD, n = 2,264). Through systematic application of five complementary feature selection algorithms to 75 potential variables, followed by comparative evaluation of 12 machine learning approaches, we developed a parsimonious assessment tool for predicting frailty diagnosis, chronic kidney disease progression, cardiovascular events, and all-cause mortality. Results Our analysis identified a minimal set of just eight readily available clinical parameters— age, sex, body mass index (BMI), pulse pressure, creatinine, hemoglobin, and preparing meals difficulty and lifting/carrying difficulty—that demonstrated robust predictive power. The extreme gradient boosting (XGBoost) algorithm exhibited superior performance across training (AUC 0.963, 95% CI: 0.951–0.975), internal validation (AUC 0.940, 95% CI: 0.924–0.956), and external validation (AUC 0.850, 95% CI: 0.832–0.868) datasets. This model significantly outperformed traditional frailty indices in predicting CKD progression (AUC 0.916 vs. 0.701, p |
| Druh dokumentu: | article |
| Popis súboru: | electronic resource |
| Jazyk: | English |
| ISSN: | 1479-5876 |
| Relation: | https://doaj.org/toc/1479-5876 |
| DOI: | 10.1186/s12967-025-06728-4 |
| Prístupová URL adresa: | https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e |
| Prístupové číslo: | edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e |
| Databáza: | Directory of Open Access Journals |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e Name: EDS - DOAJ (s4221598) Category: fullText Text: View record in DOAJ – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=1479-5876[TA]+AND+1[PG]+AND+2025[PDAT] Name: FREE - PubMed Central (ISSN based link) Category: fullText Text: Full Text Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif MouseOverText: Check this PubMed for the article full text. – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsdoj&genre=article&issn=14795876&ISBN=&volume=23&issue=1&date=20250801&spage=1&pages=1-13&title=Journal of Translational Medicine&atitle=Development%20and%20multi-cohort%20validation%20of%20a%20machine%20learning-based%20simplified%20frailty%20assessment%20tool%20for%20clinical%20risk%20prediction&aulast=Jiahui%20Lai&id=DOI:10.1186/s12967-025-06728-4 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lai%20J Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e RelevancyScore: 1064 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1064.32006835938 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Jiahui+Lai%22">Jiahui Lai</searchLink><br /><searchLink fieldCode="AR" term="%22Cailian+Cheng%22">Cailian Cheng</searchLink><br /><searchLink fieldCode="AR" term="%22Tiantian+Liang%22">Tiantian Liang</searchLink><br /><searchLink fieldCode="AR" term="%22Leile+Tang%22">Leile Tang</searchLink><br /><searchLink fieldCode="AR" term="%22Xinhua+Guo%22">Xinhua Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Xun+Liu%22">Xun Liu</searchLink> – Name: TitleSource Label: Source Group: Src Data: Journal of Translational Medicine, Vol 23, Iss 1, Pp 1-13 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: BMC, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Medicine – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Frailty+assessment%22">Frailty assessment</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22Chronic+kidney+disease%22">Chronic kidney disease</searchLink><br /><searchLink fieldCode="DE" term="%22Cardiovascular+risk%22">Cardiovascular risk</searchLink><br /><searchLink fieldCode="DE" term="%22Mortality+prediction%22">Mortality prediction</searchLink><br /><searchLink fieldCode="DE" term="%22Risk+stratification%22">Risk stratification</searchLink><br /><searchLink fieldCode="DE" term="%22Medicine%22">Medicine</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract Background Frailty significantly impacts health outcomes in aging populations, yet its routine assessment remains challenging due to the complexity and time-consuming nature of existing tools. This study aimed to develop and validate a clinically feasible, machine learning-based frailty assessment tool that balances predictive accuracy with implementation simplicity in real-world clinical settings. Methods We conducted a multi-cohort study leveraging data from the National Health and Nutrition Examination Survey (NHANES, n = 3,480), China Health and Retirement Longitudinal Study (CHARLS, n = 16,792), China Health and Nutrition Survey (CHNS, n = 6,035), and Sun Yat-sen University Third Affiliated Hospital CKD cohort (SYSU3 CKD, n = 2,264). Through systematic application of five complementary feature selection algorithms to 75 potential variables, followed by comparative evaluation of 12 machine learning approaches, we developed a parsimonious assessment tool for predicting frailty diagnosis, chronic kidney disease progression, cardiovascular events, and all-cause mortality. Results Our analysis identified a minimal set of just eight readily available clinical parameters— age, sex, body mass index (BMI), pulse pressure, creatinine, hemoglobin, and preparing meals difficulty and lifting/carrying difficulty—that demonstrated robust predictive power. The extreme gradient boosting (XGBoost) algorithm exhibited superior performance across training (AUC 0.963, 95% CI: 0.951–0.975), internal validation (AUC 0.940, 95% CI: 0.924–0.956), and external validation (AUC 0.850, 95% CI: 0.832–0.868) datasets. This model significantly outperformed traditional frailty indices in predicting CKD progression (AUC 0.916 vs. 0.701, p – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 1479-5876 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/1479-5876 – Name: DOI Label: DOI Group: ID Data: 10.1186/s12967-025-06728-4 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e" linkWindow="_blank">https://doaj.org/article/0b944d122a2d4c28ba99ffdc744a9e4e</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsdoj&AN=edsdoj.0b944d122a2d4c28ba99ffdc744a9e4e |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1186/s12967-025-06728-4 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 13 StartPage: 1 Subjects: – SubjectFull: Frailty assessment Type: general – SubjectFull: Machine learning Type: general – SubjectFull: Chronic kidney disease Type: general – SubjectFull: Cardiovascular risk Type: general – SubjectFull: Mortality prediction Type: general – SubjectFull: Risk stratification Type: general – SubjectFull: Medicine Type: general Titles: – TitleFull: Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Jiahui Lai – PersonEntity: Name: NameFull: Cailian Cheng – PersonEntity: Name: NameFull: Tiantian Liang – PersonEntity: Name: NameFull: Leile Tang – PersonEntity: Name: NameFull: Xinhua Guo – PersonEntity: Name: NameFull: Xun Liu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 08 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 14795876 Numbering: – Type: volume Value: 23 – Type: issue Value: 1 Titles: – TitleFull: Journal of Translational Medicine Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science