Resource estimation of fault tolerant quantum information set decoding

Uloženo v:
Podrobná bibliografie
Název: Resource estimation of fault tolerant quantum information set decoding
Autoři: Hutchings, Kyle
Informace o vydavateli: Royal Holloway, University of London, 2022.
Rok vydání: 2022
Sbírka: Royal Holloway, University of London
Témata: quantum computing, code based cryptography, Fault tolerance, resource estimation, Prange's algorithm, information set decoding
Popis: With the ever-present threat of quantum computing looming over the world of cryptography, researchers have been investigating how best to replace existing cryptographic schemes with those that can withstand quantum attacks. Our research contributes to the area of resource estimation, a field concerned with analysing the amount of real-world resources (both temporal and spatial) required for a quantum computer to compromise a given cryptographic scheme using the best known current methods. We present a circuit to perform Prange's algorithm, a variant of quantum information set decoding. We embed our construction within an error-correction scheme in order to calculate the overhead costs incurred by fault-tolerance. Our analysis shows that current proposed parameters for code-based cryptography provide a much larger security margin than required for their specified security level, and as such could be reduced to improve performance whilst still ensuring quantum immunity.
Druh dokumentu: Electronic Thesis or Dissertation
Jazyk: English
Přístupová URL adresa: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.870021
Přístupové číslo: edsble.870021
Databáze: British Library EThOS
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.870021
    Name: EDS - British Library EThOS
    Category: fullText
    Text: View record in EThOS
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Hutchings%20K
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsble
DbLabel: British Library EThOS
An: edsble.870021
RelevancyScore: 1005
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 1005.00079345703
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Resource estimation of fault tolerant quantum information set decoding
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Hutchings%2C+Kyle%22">Hutchings, Kyle</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Royal Holloway, University of London, 2022.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Royal Holloway, University of London
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22quantum+computing%22">quantum computing</searchLink><br /><searchLink fieldCode="DE" term="%22code+based+cryptography%22">code based cryptography</searchLink><br /><searchLink fieldCode="DE" term="%22Fault+tolerance%22">Fault tolerance</searchLink><br /><searchLink fieldCode="DE" term="%22resource+estimation%22">resource estimation</searchLink><br /><searchLink fieldCode="DE" term="%22Prange's+algorithm%22">Prange's algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22information+set+decoding%22">information set decoding</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: With the ever-present threat of quantum computing looming over the world of cryptography, researchers have been investigating how best to replace existing cryptographic schemes with those that can withstand quantum attacks. Our research contributes to the area of resource estimation, a field concerned with analysing the amount of real-world resources (both temporal and spatial) required for a quantum computer to compromise a given cryptographic scheme using the best known current methods. We present a circuit to perform Prange's algorithm, a variant of quantum information set decoding. We embed our construction within an error-correction scheme in order to calculate the overhead costs incurred by fault-tolerance. Our analysis shows that current proposed parameters for code-based cryptography provide a much larger security margin than required for their specified security level, and as such could be reduced to improve performance whilst still ensuring quantum immunity.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Electronic Thesis or Dissertation
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.870021" linkWindow="_blank">https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.870021</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsble.870021
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsble&AN=edsble.870021
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: quantum computing
        Type: general
      – SubjectFull: code based cryptography
        Type: general
      – SubjectFull: Fault tolerance
        Type: general
      – SubjectFull: resource estimation
        Type: general
      – SubjectFull: Prange's algorithm
        Type: general
      – SubjectFull: information set decoding
        Type: general
    Titles:
      – TitleFull: Resource estimation of fault tolerant quantum information set decoding
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Hutchings, Kyle
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-locals
              Value: edsble
ResultId 1