Fully parallel implementation of timing-error-tolerant LDPC decoders

Uloženo v:
Podrobná bibliografie
Název: Fully parallel implementation of timing-error-tolerant LDPC decoders
Autoři: Zuo, Xin
Přispěvatelé: Hanzo, Lajos
Informace o vydavateli: University of Southampton, 2016.
Rok vydání: 2016
Sbírka: University of Southampton
Témata: 621.3815
Popis: In this thesis, the design of fully parallel timing-error-tolerant Low-Density Parity-Check (LDPC) decoders have been investigated. LDPC decoders are employed in numerous communication systems to correct channel-induced transmission errors. The ever increasing data traffic demands require LDPC decoders that are capable of providing high processing throughput and low processing latency, using limited hardware resources and energy consumption. The fully parallel implementation of LDPC decoders is suitable, due to the high throughput and low latency that this affords. However, the task of designing reliable Very Large-Scale Integration (VLSI) systems is becoming increasingly challenging in successive generations of nanoscale fabrication technology. This may be attributed to the occurrence of timing errors, during the processing, which is caused by the increasing susceptibility to IR drop, inductive noise, crosstalk, electrostatic discharges, particle strikes, switching noise and fabrication process variations. Therefore it is necessary to consider the effects of timing errors during the design of LDPC decoders. However, the characterization of the timing error tolerance of LDPC decoders relying on measurements obtained directly from a fabricated Application-Specific Integrated Circuit (ASIC) may not be preferable, owing to the associated risk of wasting all of the invested time, effort and expense, if the ASIC is not able to facilitate the desired outcomes. A novel design flow is therefore proposed in this thesis, which allows the use of simulations at the algorithm level to investigate the decoders' error correction performance, with considerations of the occurrence of timing errors in the hardware architecture level of the design. LDPC decoders employing the optimal Sum-Product Algorithm (SPA) have a very high implementation complexity, which requires the exchange of floating point probabilities between the parity-Check Nodes (CNs) and Variable Nodes (VNs) in their factor graph representation. In order to reduce the complexity, the Log-Sum-Product Algorithm(Log-SPA) and the Min-Sum Algorithm (MSA) may be employed in the LDPC decoder, which operate on a basis of Log-Likelihood Ratios (LLRs), rather than probabilities. These LLRs can be represented by Fixed-Point (FP) numbers, comprising a number of bits, referred to as the bit width. It is this bit width that proportionally determines both the size of the memory required, as well as the area of the data path and hence the energy consumption imposed. We propose the use of EXtrinsic Information Transfer (EXIT) charts to select the bit widths for the Fixed-point LDPC Decoders (LDPC-FDs), in order to achieve a desirable trade-off between the implementation complexity and the error correction performance. This significantly expedites the LDPC-FD design process, relative to the conventional approach of using trial and error based Bit Error Ratio (BER) simulations. Using the proposed design flow, timing characteristics analysis may be performed on the LDPC-FD, in order to derive an error model of the causes and effects of timing errors. With the aid of the error model, the error correction performance of the LDPC-FD in the presence of timing errors may be characterized. In this way, the parametrization of the LDPC-FD may be optimized. In Stochastic LDPC Decoders (LDPC-SDs), only a single bit is exchanged between each pair of CNs and VNs in each clock cycle. Over the course of several successive clock cycles, the individual bits that are exchanged between a particular pair of nodes collectively form a Bernoulli sequence, which may replace the LLRs conventionally used in LDPC-FDs. Owing to this, the operations of the CNs and VNs may be implemented using simple logic gates, which grants LDPC-SDs the practical opportunity for fully parallel implementation. As in LDPC-FDs, the proposed design flow may be adopted to guide the investigation of the timing error tolerance of LDPC-SDs, in order to determine their optimal parametrization.
Druh dokumentu: Electronic Thesis or Dissertation
Jazyk: English
Přístupová URL adresa: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694510
Přístupové číslo: edsble.694510
Databáze: British Library EThOS
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694510
    Name: EDS - British Library EThOS
    Category: fullText
    Text: View record in EThOS
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zuo%20X
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsble
DbLabel: British Library EThOS
An: edsble.694510
RelevancyScore: 943
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 943.477478027344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Fully parallel implementation of timing-error-tolerant LDPC decoders
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zuo%2C+Xin%22">Zuo, Xin</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Hanzo, Lajos
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: University of Southampton, 2016.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2016
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: University of Southampton
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22621%2E3815%22">621.3815</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this thesis, the design of fully parallel timing-error-tolerant Low-Density Parity-Check (LDPC) decoders have been investigated. LDPC decoders are employed in numerous communication systems to correct channel-induced transmission errors. The ever increasing data traffic demands require LDPC decoders that are capable of providing high processing throughput and low processing latency, using limited hardware resources and energy consumption. The fully parallel implementation of LDPC decoders is suitable, due to the high throughput and low latency that this affords. However, the task of designing reliable Very Large-Scale Integration (VLSI) systems is becoming increasingly challenging in successive generations of nanoscale fabrication technology. This may be attributed to the occurrence of timing errors, during the processing, which is caused by the increasing susceptibility to IR drop, inductive noise, crosstalk, electrostatic discharges, particle strikes, switching noise and fabrication process variations. Therefore it is necessary to consider the effects of timing errors during the design of LDPC decoders. However, the characterization of the timing error tolerance of LDPC decoders relying on measurements obtained directly from a fabricated Application-Specific Integrated Circuit (ASIC) may not be preferable, owing to the associated risk of wasting all of the invested time, effort and expense, if the ASIC is not able to facilitate the desired outcomes. A novel design flow is therefore proposed in this thesis, which allows the use of simulations at the algorithm level to investigate the decoders' error correction performance, with considerations of the occurrence of timing errors in the hardware architecture level of the design. LDPC decoders employing the optimal Sum-Product Algorithm (SPA) have a very high implementation complexity, which requires the exchange of floating point probabilities between the parity-Check Nodes (CNs) and Variable Nodes (VNs) in their factor graph representation. In order to reduce the complexity, the Log-Sum-Product Algorithm(Log-SPA) and the Min-Sum Algorithm (MSA) may be employed in the LDPC decoder, which operate on a basis of Log-Likelihood Ratios (LLRs), rather than probabilities. These LLRs can be represented by Fixed-Point (FP) numbers, comprising a number of bits, referred to as the bit width. It is this bit width that proportionally determines both the size of the memory required, as well as the area of the data path and hence the energy consumption imposed. We propose the use of EXtrinsic Information Transfer (EXIT) charts to select the bit widths for the Fixed-point LDPC Decoders (LDPC-FDs), in order to achieve a desirable trade-off between the implementation complexity and the error correction performance. This significantly expedites the LDPC-FD design process, relative to the conventional approach of using trial and error based Bit Error Ratio (BER) simulations. Using the proposed design flow, timing characteristics analysis may be performed on the LDPC-FD, in order to derive an error model of the causes and effects of timing errors. With the aid of the error model, the error correction performance of the LDPC-FD in the presence of timing errors may be characterized. In this way, the parametrization of the LDPC-FD may be optimized. In Stochastic LDPC Decoders (LDPC-SDs), only a single bit is exchanged between each pair of CNs and VNs in each clock cycle. Over the course of several successive clock cycles, the individual bits that are exchanged between a particular pair of nodes collectively form a Bernoulli sequence, which may replace the LLRs conventionally used in LDPC-FDs. Owing to this, the operations of the CNs and VNs may be implemented using simple logic gates, which grants LDPC-SDs the practical opportunity for fully parallel implementation. As in LDPC-FDs, the proposed design flow may be adopted to guide the investigation of the timing error tolerance of LDPC-SDs, in order to determine their optimal parametrization.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Electronic Thesis or Dissertation
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694510" linkWindow="_blank">https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694510</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsble.694510
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsble&AN=edsble.694510
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: 621.3815
        Type: general
    Titles:
      – TitleFull: Fully parallel implementation of timing-error-tolerant LDPC decoders
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zuo, Xin
      – PersonEntity:
          Name:
            NameFull: Hanzo, Lajos
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2016
          Identifiers:
            – Type: issn-locals
              Value: edsble
ResultId 1