Study of FATES Properties in the‬ MLOps field

Uloženo v:
Podrobná bibliografie
Název: Study of FATES Properties in the‬ MLOps field
Autoři: Alkan, Emré, Ibazizene, Kaci
Přispěvatelé: CESI : groupe d’Enseignement Supérieur et de Formation Professionnelle (CESI), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), IRIT : Institut de Recherche Informatique de Toulouse, UT2J : Université Toulouse 2 Jean Jaurès, ANR-24-IAS2-0002,FATES-MLOps,Intégration des propriétés FATES dans le développement continu des systèmes basés Machine Learning : application au MLOps(2024)
Zdroj: https://hal.science/hal-05014141 ; IRIT : Institut de Recherche Informatique de Toulouse; UT2J : Université Toulouse 2 Jean Jaurès. 2025, pp.46.
Informace o vydavateli: CCSD
Rok vydání: 2025
Témata: Post-processing Algorithms 5.1.2. Fairness' Metrics 5.1.3. Fairness Libraries 5.2. Accountability 5.2.1. Technics to improve accountability 5.2.2. Adding a verification method 5.3. Transparency 5.3.1. Model Cards 5.3.2. Datasheet 5.4. Ethics 5.5. Safety &, amp, Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring Incident Response and Lifecycle Management 6. CONCLUSION, Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring, Incident Response, and Lifecycle Management 6. CONCLUSION, [INFO]Computer Science [cs], [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Popis: The‬‭ MLOps‬‭ movement‬‭ builds‬‭ upon‬‭ the‬‭ principles‬‭ of‬‭ DevOps‬‭ (Kim‬‭ et‬‭ al.,‬‭ 2016),‬‭ integrating‬‭ the‬‭ specific‬‭ challenges‬‭ of‬‭ Machine‬‭ Learning‬‭ (ML)‬‭ to‬‭ enhance‬‭ automation,‬‭ integration,‬‭ and‬‭ monitoring‬‭ throughout‬‭ the‬‭ model‬‭ lifecycle‬‭ (Testi‬‭ et‬‭ al.,‬‭ 2022).‬‭ This‬‭ systematic‬‭ approach‬‭ introduces‬‭ new‬‭ quality‬‭ requirements‬‭ for‬‭ software‬‭ systems,‬‭ ensuring‬‭ model‬‭ performance‬‭ and‬‭ adaptability as data evolves.‬‭ In‬‭ this‬‭ context,‬‭ the‬‭ shift‬‭ from‬‭ model-centric‬‭ AI‬‭ to‬‭ data-centric‬‭ AI‬‭ highlights‬‭ the‬‭ necessity‬‭ of‬‭ formalizing‬‭ and‬‭ tracking‬‭ fundamental‬‭ principles‬‭ throughout‬‭ the‬‭ ML‬‭ system‬‭ development‬‭ process.‬‭ The‬‭ FAT/ML‬‭ initiative,‬‭ launched‬‭ in‬‭ 2014,‬‭ initially‬‭ introduced‬‭ three‬‭ key‬‭ properties:‬‭ Fairness,‬‭ Accountability,‬‭ and‬‭ Transparency.‬‭ These‬‭ principles‬‭ were‬‭ later‬‭ expanded‬‭ with‬‭ the‬‭ inclusion‬‭ of‬‭ Ethics‬‭ by‬‭ Microsoft’s‬‭ FATE‬‭ research‬‭ group‬‭ and,‬‭ more‬‭ recently,‬‭ Safety‬‭ and‬‭ Security,‬‭ forming the FATES framework.‬‭ The‬‭ FATES-MLOps‬‭ project‬‭ aims‬‭ to‬‭ study‬‭ these‬‭ properties‬‭ and‬‭ propose‬‭ a‬‭ systematic‬‭ approach‬‭ to‬‭ ensure‬‭ their‬‭ integration‬‭ into‬‭ ML‬‭ systems‬‭ developed‬‭ using‬‭ MLOps‬‭ methodologies.‬‭ While‬‭ certain‬‭ algorithms‬‭ already‬‭ address‬‭ some‬‭ of‬‭ these‬‭ properties‬‭ (such‬‭ as‬‭ Fairness,‬‭ Transparency,‬‭ and‬‭ Security),‬‭ others,‬‭ like‬‭ Accountability‬‭ and‬‭ Ethics,‬‭ rely‬‭ more‬‭ on‬‭ organizational‬‭ and‬‭ regulatory‬‭ commitments.‬‭ However,‬‭ there‬‭ is‬‭ still‬‭ no‬‭ unified‬‭ framework‬‭ or‬‭ systematic‬‭ indicators‬‭ that‬‭ guide‬‭ ML scientists and engineers in ensuring adherence to the FATES principles.‬In‬‭ this‬‭ document,‬‭ we‬‭ will‬‭ define‬‭ the‬‭ different‬‭ FATES‬‭ properties,‬‭ analyze‬‭ their‬‭ interconnections,‬ and‬‭ explore‬‭ existing‬‭ tools‬‭ and‬‭ metrics‬‭ that‬‭ help‬‭ integrate‬‭ these‬‭ principles‬‭ into‬‭ ML‬‭ models.‬‭ Ultimately,‬‭ our‬‭ goal‬‭ is‬‭ to‬‭ ...
Druh dokumentu: report
Jazyk: English
Dostupnost: https://hal.science/hal-05014141
https://hal.science/hal-05014141v1/document
https://hal.science/hal-05014141v1/file/RapportCESI2025%20%281%29.pdf
Rights: info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.FD6BA9DF
Databáze: BASE
Popis
Abstrakt:The‬‭ MLOps‬‭ movement‬‭ builds‬‭ upon‬‭ the‬‭ principles‬‭ of‬‭ DevOps‬‭ (Kim‬‭ et‬‭ al.,‬‭ 2016),‬‭ integrating‬‭ the‬‭ specific‬‭ challenges‬‭ of‬‭ Machine‬‭ Learning‬‭ (ML)‬‭ to‬‭ enhance‬‭ automation,‬‭ integration,‬‭ and‬‭ monitoring‬‭ throughout‬‭ the‬‭ model‬‭ lifecycle‬‭ (Testi‬‭ et‬‭ al.,‬‭ 2022).‬‭ This‬‭ systematic‬‭ approach‬‭ introduces‬‭ new‬‭ quality‬‭ requirements‬‭ for‬‭ software‬‭ systems,‬‭ ensuring‬‭ model‬‭ performance‬‭ and‬‭ adaptability as data evolves.‬‭ In‬‭ this‬‭ context,‬‭ the‬‭ shift‬‭ from‬‭ model-centric‬‭ AI‬‭ to‬‭ data-centric‬‭ AI‬‭ highlights‬‭ the‬‭ necessity‬‭ of‬‭ formalizing‬‭ and‬‭ tracking‬‭ fundamental‬‭ principles‬‭ throughout‬‭ the‬‭ ML‬‭ system‬‭ development‬‭ process.‬‭ The‬‭ FAT/ML‬‭ initiative,‬‭ launched‬‭ in‬‭ 2014,‬‭ initially‬‭ introduced‬‭ three‬‭ key‬‭ properties:‬‭ Fairness,‬‭ Accountability,‬‭ and‬‭ Transparency.‬‭ These‬‭ principles‬‭ were‬‭ later‬‭ expanded‬‭ with‬‭ the‬‭ inclusion‬‭ of‬‭ Ethics‬‭ by‬‭ Microsoft’s‬‭ FATE‬‭ research‬‭ group‬‭ and,‬‭ more‬‭ recently,‬‭ Safety‬‭ and‬‭ Security,‬‭ forming the FATES framework.‬‭ The‬‭ FATES-MLOps‬‭ project‬‭ aims‬‭ to‬‭ study‬‭ these‬‭ properties‬‭ and‬‭ propose‬‭ a‬‭ systematic‬‭ approach‬‭ to‬‭ ensure‬‭ their‬‭ integration‬‭ into‬‭ ML‬‭ systems‬‭ developed‬‭ using‬‭ MLOps‬‭ methodologies.‬‭ While‬‭ certain‬‭ algorithms‬‭ already‬‭ address‬‭ some‬‭ of‬‭ these‬‭ properties‬‭ (such‬‭ as‬‭ Fairness,‬‭ Transparency,‬‭ and‬‭ Security),‬‭ others,‬‭ like‬‭ Accountability‬‭ and‬‭ Ethics,‬‭ rely‬‭ more‬‭ on‬‭ organizational‬‭ and‬‭ regulatory‬‭ commitments.‬‭ However,‬‭ there‬‭ is‬‭ still‬‭ no‬‭ unified‬‭ framework‬‭ or‬‭ systematic‬‭ indicators‬‭ that‬‭ guide‬‭ ML scientists and engineers in ensuring adherence to the FATES principles.‬In‬‭ this‬‭ document,‬‭ we‬‭ will‬‭ define‬‭ the‬‭ different‬‭ FATES‬‭ properties,‬‭ analyze‬‭ their‬‭ interconnections,‬ and‬‭ explore‬‭ existing‬‭ tools‬‭ and‬‭ metrics‬‭ that‬‭ help‬‭ integrate‬‭ these‬‭ principles‬‭ into‬‭ ML‬‭ models.‬‭ Ultimately,‬‭ our‬‭ goal‬‭ is‬‭ to‬‭ ...