Study of FATES Properties in the‬ MLOps field

Saved in:
Bibliographic Details
Title: Study of FATES Properties in the‬ MLOps field
Authors: Alkan, Emré, Ibazizene, Kaci
Contributors: CESI : groupe d’Enseignement Supérieur et de Formation Professionnelle (CESI), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), IRIT : Institut de Recherche Informatique de Toulouse, UT2J : Université Toulouse 2 Jean Jaurès, ANR-24-IAS2-0002,FATES-MLOps,Intégration des propriétés FATES dans le développement continu des systèmes basés Machine Learning : application au MLOps(2024)
Source: https://hal.science/hal-05014141 ; IRIT : Institut de Recherche Informatique de Toulouse; UT2J : Université Toulouse 2 Jean Jaurès. 2025, pp.46.
Publisher Information: CCSD
Publication Year: 2025
Subject Terms: Post-processing Algorithms 5.1.2. Fairness' Metrics 5.1.3. Fairness Libraries 5.2. Accountability 5.2.1. Technics to improve accountability 5.2.2. Adding a verification method 5.3. Transparency 5.3.1. Model Cards 5.3.2. Datasheet 5.4. Ethics 5.5. Safety &, amp, Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring Incident Response and Lifecycle Management 6. CONCLUSION, Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring, Incident Response, and Lifecycle Management 6. CONCLUSION, [INFO]Computer Science [cs], [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Description: The‬‭ MLOps‬‭ movement‬‭ builds‬‭ upon‬‭ the‬‭ principles‬‭ of‬‭ DevOps‬‭ (Kim‬‭ et‬‭ al.,‬‭ 2016),‬‭ integrating‬‭ the‬‭ specific‬‭ challenges‬‭ of‬‭ Machine‬‭ Learning‬‭ (ML)‬‭ to‬‭ enhance‬‭ automation,‬‭ integration,‬‭ and‬‭ monitoring‬‭ throughout‬‭ the‬‭ model‬‭ lifecycle‬‭ (Testi‬‭ et‬‭ al.,‬‭ 2022).‬‭ This‬‭ systematic‬‭ approach‬‭ introduces‬‭ new‬‭ quality‬‭ requirements‬‭ for‬‭ software‬‭ systems,‬‭ ensuring‬‭ model‬‭ performance‬‭ and‬‭ adaptability as data evolves.‬‭ In‬‭ this‬‭ context,‬‭ the‬‭ shift‬‭ from‬‭ model-centric‬‭ AI‬‭ to‬‭ data-centric‬‭ AI‬‭ highlights‬‭ the‬‭ necessity‬‭ of‬‭ formalizing‬‭ and‬‭ tracking‬‭ fundamental‬‭ principles‬‭ throughout‬‭ the‬‭ ML‬‭ system‬‭ development‬‭ process.‬‭ The‬‭ FAT/ML‬‭ initiative,‬‭ launched‬‭ in‬‭ 2014,‬‭ initially‬‭ introduced‬‭ three‬‭ key‬‭ properties:‬‭ Fairness,‬‭ Accountability,‬‭ and‬‭ Transparency.‬‭ These‬‭ principles‬‭ were‬‭ later‬‭ expanded‬‭ with‬‭ the‬‭ inclusion‬‭ of‬‭ Ethics‬‭ by‬‭ Microsoft’s‬‭ FATE‬‭ research‬‭ group‬‭ and,‬‭ more‬‭ recently,‬‭ Safety‬‭ and‬‭ Security,‬‭ forming the FATES framework.‬‭ The‬‭ FATES-MLOps‬‭ project‬‭ aims‬‭ to‬‭ study‬‭ these‬‭ properties‬‭ and‬‭ propose‬‭ a‬‭ systematic‬‭ approach‬‭ to‬‭ ensure‬‭ their‬‭ integration‬‭ into‬‭ ML‬‭ systems‬‭ developed‬‭ using‬‭ MLOps‬‭ methodologies.‬‭ While‬‭ certain‬‭ algorithms‬‭ already‬‭ address‬‭ some‬‭ of‬‭ these‬‭ properties‬‭ (such‬‭ as‬‭ Fairness,‬‭ Transparency,‬‭ and‬‭ Security),‬‭ others,‬‭ like‬‭ Accountability‬‭ and‬‭ Ethics,‬‭ rely‬‭ more‬‭ on‬‭ organizational‬‭ and‬‭ regulatory‬‭ commitments.‬‭ However,‬‭ there‬‭ is‬‭ still‬‭ no‬‭ unified‬‭ framework‬‭ or‬‭ systematic‬‭ indicators‬‭ that‬‭ guide‬‭ ML scientists and engineers in ensuring adherence to the FATES principles.‬In‬‭ this‬‭ document,‬‭ we‬‭ will‬‭ define‬‭ the‬‭ different‬‭ FATES‬‭ properties,‬‭ analyze‬‭ their‬‭ interconnections,‬ and‬‭ explore‬‭ existing‬‭ tools‬‭ and‬‭ metrics‬‭ that‬‭ help‬‭ integrate‬‭ these‬‭ principles‬‭ into‬‭ ML‬‭ models.‬‭ Ultimately,‬‭ our‬‭ goal‬‭ is‬‭ to‬‭ ...
Document Type: report
Language: English
Availability: https://hal.science/hal-05014141
https://hal.science/hal-05014141v1/document
https://hal.science/hal-05014141v1/file/RapportCESI2025%20%281%29.pdf
Rights: info:eu-repo/semantics/OpenAccess
Accession Number: edsbas.FD6BA9DF
Database: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://hal.science/hal-05014141#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Alkan%20E
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.FD6BA9DF
RelevancyScore: 994
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 994.3056640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Study of FATES Properties in the‬ MLOps field
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Alkan%2C+Emré%22">Alkan, Emré</searchLink><br /><searchLink fieldCode="AR" term="%22Ibazizene%2C+Kaci%22">Ibazizene, Kaci</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: CESI : groupe d’Enseignement Supérieur et de Formation Professionnelle (CESI)<br />HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)<br />IRIT : Institut de Recherche Informatique de Toulouse<br />UT2J : Université Toulouse 2 Jean Jaurès<br />ANR-24-IAS2-0002,FATES-MLOps,Intégration des propriétés FATES dans le développement continu des systèmes basés Machine Learning : application au MLOps(2024)
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>https://hal.science/hal-05014141 ; IRIT : Institut de Recherche Informatique de Toulouse; UT2J : Université Toulouse 2 Jean Jaurès. 2025, pp.46</i>.
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: CCSD
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Post-processing+Algorithms+5%2E1%2E2%2E+Fairness'+Metrics+5%2E1%2E3%2E+Fairness+Libraries+5%2E2%2E+Accountability+5%2E2%2E1%2E+Technics+to+improve+accountability+5%2E2%2E2%2E+Adding+a+verification+method+5%2E3%2E+Transparency+5%2E3%2E1%2E+Model+Cards+5%2E3%2E2%2E+Datasheet+5%2E4%2E+Ethics+5%2E5%2E+Safety+%26amp%22">Post-processing Algorithms 5.1.2. Fairness' Metrics 5.1.3. Fairness Libraries 5.2. Accountability 5.2.1. Technics to improve accountability 5.2.2. Adding a verification method 5.3. Transparency 5.3.1. Model Cards 5.3.2. Datasheet 5.4. Ethics 5.5. Safety &amp</searchLink><br /><searchLink fieldCode="DE" term="%22amp%22">amp</searchLink><br /><searchLink fieldCode="DE" term="%22Security+5%2E5%2E1%2E+Safety+Technics+5%2E5%2E1%2E1%2E+Robustness+testing+and+validation+5%2E5%2E1%2E2%2E+Explainable+AI+%28XAI%29+5%2E5%2E1%2E3%2E+Human+oversight+5%2E5%2E1%2E4%2E+Security+protocols+5%2E5%2E2%2E+Security+Techniques+5%2E5%2E2%2E1%2E+Threat+Modeling+and+Risk+Assessment+5%2E5%2E2%2E2%2E+Secure+Development+and+Validation+Practices+5%2E5%2E2%2E3%2E+Monitoring+Incident+Response+and+Lifecycle+Management+6%2E+CONCLUSION%22">Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring Incident Response and Lifecycle Management 6. CONCLUSION</searchLink><br /><searchLink fieldCode="DE" term="%22Security+5%2E5%2E1%2E+Safety+Technics+5%2E5%2E1%2E1%2E+Robustness+testing+and+validation+5%2E5%2E1%2E2%2E+Explainable+AI+%28XAI%29+5%2E5%2E1%2E3%2E+Human+oversight+5%2E5%2E1%2E4%2E+Security+protocols+5%2E5%2E2%2E+Security+Techniques+5%2E5%2E2%2E1%2E+Threat+Modeling+and+Risk+Assessment+5%2E5%2E2%2E2%2E+Secure+Development+and+Validation+Practices+5%2E5%2E2%2E3%2E+Monitoring%22">Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring</searchLink><br /><searchLink fieldCode="DE" term="%22Incident+Response%22">Incident Response</searchLink><br /><searchLink fieldCode="DE" term="%22and+Lifecycle+Management+6%2E+CONCLUSION%22">and Lifecycle Management 6. CONCLUSION</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO]Computer+Science+[cs]%22">[INFO]Computer Science [cs]</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-AI]Computer+Science+[cs]%2FArtificial+Intelligence+[cs%2EAI]%22">[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The‬‭ MLOps‬‭ movement‬‭ builds‬‭ upon‬‭ the‬‭ principles‬‭ of‬‭ DevOps‬‭ (Kim‬‭ et‬‭ al.,‬‭ 2016),‬‭ integrating‬‭ the‬‭ specific‬‭ challenges‬‭ of‬‭ Machine‬‭ Learning‬‭ (ML)‬‭ to‬‭ enhance‬‭ automation,‬‭ integration,‬‭ and‬‭ monitoring‬‭ throughout‬‭ the‬‭ model‬‭ lifecycle‬‭ (Testi‬‭ et‬‭ al.,‬‭ 2022).‬‭ This‬‭ systematic‬‭ approach‬‭ introduces‬‭ new‬‭ quality‬‭ requirements‬‭ for‬‭ software‬‭ systems,‬‭ ensuring‬‭ model‬‭ performance‬‭ and‬‭ adaptability as data evolves.‬‭ In‬‭ this‬‭ context,‬‭ the‬‭ shift‬‭ from‬‭ model-centric‬‭ AI‬‭ to‬‭ data-centric‬‭ AI‬‭ highlights‬‭ the‬‭ necessity‬‭ of‬‭ formalizing‬‭ and‬‭ tracking‬‭ fundamental‬‭ principles‬‭ throughout‬‭ the‬‭ ML‬‭ system‬‭ development‬‭ process.‬‭ The‬‭ FAT/ML‬‭ initiative,‬‭ launched‬‭ in‬‭ 2014,‬‭ initially‬‭ introduced‬‭ three‬‭ key‬‭ properties:‬‭ Fairness,‬‭ Accountability,‬‭ and‬‭ Transparency.‬‭ These‬‭ principles‬‭ were‬‭ later‬‭ expanded‬‭ with‬‭ the‬‭ inclusion‬‭ of‬‭ Ethics‬‭ by‬‭ Microsoft’s‬‭ FATE‬‭ research‬‭ group‬‭ and,‬‭ more‬‭ recently,‬‭ Safety‬‭ and‬‭ Security,‬‭ forming the FATES framework.‬‭ The‬‭ FATES-MLOps‬‭ project‬‭ aims‬‭ to‬‭ study‬‭ these‬‭ properties‬‭ and‬‭ propose‬‭ a‬‭ systematic‬‭ approach‬‭ to‬‭ ensure‬‭ their‬‭ integration‬‭ into‬‭ ML‬‭ systems‬‭ developed‬‭ using‬‭ MLOps‬‭ methodologies.‬‭ While‬‭ certain‬‭ algorithms‬‭ already‬‭ address‬‭ some‬‭ of‬‭ these‬‭ properties‬‭ (such‬‭ as‬‭ Fairness,‬‭ Transparency,‬‭ and‬‭ Security),‬‭ others,‬‭ like‬‭ Accountability‬‭ and‬‭ Ethics,‬‭ rely‬‭ more‬‭ on‬‭ organizational‬‭ and‬‭ regulatory‬‭ commitments.‬‭ However,‬‭ there‬‭ is‬‭ still‬‭ no‬‭ unified‬‭ framework‬‭ or‬‭ systematic‬‭ indicators‬‭ that‬‭ guide‬‭ ML scientists and engineers in ensuring adherence to the FATES principles.‬In‬‭ this‬‭ document,‬‭ we‬‭ will‬‭ define‬‭ the‬‭ different‬‭ FATES‬‭ properties,‬‭ analyze‬‭ their‬‭ interconnections,‬ and‬‭ explore‬‭ existing‬‭ tools‬‭ and‬‭ metrics‬‭ that‬‭ help‬‭ integrate‬‭ these‬‭ principles‬‭ into‬‭ ML‬‭ models.‬‭ Ultimately,‬‭ our‬‭ goal‬‭ is‬‭ to‬‭ ...
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: report
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: URL
  Label: Availability
  Group: URL
  Data: https://hal.science/hal-05014141<br />https://hal.science/hal-05014141v1/document<br />https://hal.science/hal-05014141v1/file/RapportCESI2025%20%281%29.pdf
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: info:eu-repo/semantics/OpenAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.FD6BA9DF
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.FD6BA9DF
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Post-processing Algorithms 5.1.2. Fairness' Metrics 5.1.3. Fairness Libraries 5.2. Accountability 5.2.1. Technics to improve accountability 5.2.2. Adding a verification method 5.3. Transparency 5.3.1. Model Cards 5.3.2. Datasheet 5.4. Ethics 5.5. Safety &amp
        Type: general
      – SubjectFull: amp
        Type: general
      – SubjectFull: Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring Incident Response and Lifecycle Management 6. CONCLUSION
        Type: general
      – SubjectFull: Security 5.5.1. Safety Technics 5.5.1.1. Robustness testing and validation 5.5.1.2. Explainable AI (XAI) 5.5.1.3. Human oversight 5.5.1.4. Security protocols 5.5.2. Security Techniques 5.5.2.1. Threat Modeling and Risk Assessment 5.5.2.2. Secure Development and Validation Practices 5.5.2.3. Monitoring
        Type: general
      – SubjectFull: Incident Response
        Type: general
      – SubjectFull: and Lifecycle Management 6. CONCLUSION
        Type: general
      – SubjectFull: [INFO]Computer Science [cs]
        Type: general
      – SubjectFull: [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
        Type: general
    Titles:
      – TitleFull: Study of FATES Properties in the‬ MLOps field
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Alkan, Emré
      – PersonEntity:
          Name:
            NameFull: Ibazizene, Kaci
      – PersonEntity:
          Name:
            NameFull: CESI : groupe d’Enseignement Supérieur et de Formation Professionnelle (CESI)
      – PersonEntity:
          Name:
            NameFull: HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
      – PersonEntity:
          Name:
            NameFull: IRIT : Institut de Recherche Informatique de Toulouse
      – PersonEntity:
          Name:
            NameFull: UT2J : Université Toulouse 2 Jean Jaurès
      – PersonEntity:
          Name:
            NameFull: ANR-24-IAS2-0002,FATES-MLOps,Intégration des propriétés FATES dans le développement continu des systèmes basés Machine Learning : application au MLOps(2024)
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: https://hal.science/hal-05014141 ; IRIT : Institut de Recherche Informatique de Toulouse; UT2J : Université Toulouse 2 Jean Jaurès. 2025, pp.46
              Type: main
ResultId 1