An approximation to the inverse of left-sided truncated gaussian cumulative normal density function using Polya's model to generate random variates for simulation applications
Gespeichert in:
| Titel: | An approximation to the inverse of left-sided truncated gaussian cumulative normal density function using Polya's model to generate random variates for simulation applications |
|---|---|
| Autoren: | Hamasha Mohammad M., Ahmed Abdulaziz, Ali Haneen, Hamasha Sa'd, Aqlan Faisal |
| Quelle: | Istrazivanja i projektovanja za privredu, Vol 20, Iss 2, Pp 582-589 (2022) |
| Verlagsinformationen: | Institut za istrazivanja i projektovanja u privredi |
| Publikationsjahr: | 2022 |
| Bestand: | Directory of Open Access Journals: DOAJ Articles |
| Schlagwörter: | gaussian distribution, normal distribution, random variate generation, cumulative density function, mathematical approximation, truncated normal distribution, Technology, Engineering (General). Civil engineering (General), TA1-2040 |
| Beschreibung: | The Gaussian or normal distribution is vital in most areas of industrial engineering, including simulation. For example, the inverse of the Gaussian cumulative density function is used in all simulation software (e.g., ARENA, ProModel) to generate a group of random numbers that fit Gaussian distribution. It is also used to estimate the life expectancy of new devices. However, the Gaussian distribution that is truncated from the left side is not defined in any simulation software. Estimation of the expected life of used devices needs left-sided truncated Gaussian distribution. Additionally, very few works examine generating random numbers from left-sided truncated Gaussian distribution. A high accuracy mathematical-based approximation to the left-sided truncated Gaussian cumulative density function is proposed in the current work. Our approximation is built based on Polya's approximation of the Gaussian cumulative density function. The current model is beneficial to approximate the inverse of the left-sided truncated Gaussian cumulative density function to generate random variates, which is necessary for simulation applications. |
| Publikationsart: | article in journal/newspaper |
| Sprache: | English |
| Relation: | https://scindeks-clanci.ceon.rs/data/pdf/1451-4117/2022/1451-41172202582H.pdf; https://doaj.org/toc/1451-4117; https://doaj.org/toc/1821-3197; https://doaj.org/article/ac1b2ca2402b4f258c7d324d4642ffd3 |
| DOI: | 10.5937/jaes0-35413 |
| Verfügbarkeit: | https://doi.org/10.5937/jaes0-35413 https://doaj.org/article/ac1b2ca2402b4f258c7d324d4642ffd3 |
| Dokumentencode: | edsbas.FC2E0268 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.5937/jaes0-35413# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=M.%20HM Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.FC2E0268 RelevancyScore: 920 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 920.2763671875 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: An approximation to the inverse of left-sided truncated gaussian cumulative normal density function using Polya's model to generate random variates for simulation applications – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Hamasha+Mohammad+M%2E%22">Hamasha Mohammad M.</searchLink><br /><searchLink fieldCode="AR" term="%22Ahmed+Abdulaziz%22">Ahmed Abdulaziz</searchLink><br /><searchLink fieldCode="AR" term="%22Ali+Haneen%22">Ali Haneen</searchLink><br /><searchLink fieldCode="AR" term="%22Hamasha+Sa'd%22">Hamasha Sa'd</searchLink><br /><searchLink fieldCode="AR" term="%22Aqlan+Faisal%22">Aqlan Faisal</searchLink> – Name: TitleSource Label: Source Group: Src Data: Istrazivanja i projektovanja za privredu, Vol 20, Iss 2, Pp 582-589 (2022) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Institut za istrazivanja i projektovanja u privredi – Name: DatePubCY Label: Publication Year Group: Date Data: 2022 – Name: Subset Label: Collection Group: HoldingsInfo Data: Directory of Open Access Journals: DOAJ Articles – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22gaussian+distribution%22">gaussian distribution</searchLink><br /><searchLink fieldCode="DE" term="%22normal+distribution%22">normal distribution</searchLink><br /><searchLink fieldCode="DE" term="%22random+variate+generation%22">random variate generation</searchLink><br /><searchLink fieldCode="DE" term="%22cumulative+density+function%22">cumulative density function</searchLink><br /><searchLink fieldCode="DE" term="%22mathematical+approximation%22">mathematical approximation</searchLink><br /><searchLink fieldCode="DE" term="%22truncated+normal+distribution%22">truncated normal distribution</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Engineering+%28General%29%2E+Civil+engineering+%28General%29%22">Engineering (General). Civil engineering (General)</searchLink><br /><searchLink fieldCode="DE" term="%22TA1-2040%22">TA1-2040</searchLink> – Name: Abstract Label: Description Group: Ab Data: The Gaussian or normal distribution is vital in most areas of industrial engineering, including simulation. For example, the inverse of the Gaussian cumulative density function is used in all simulation software (e.g., ARENA, ProModel) to generate a group of random numbers that fit Gaussian distribution. It is also used to estimate the life expectancy of new devices. However, the Gaussian distribution that is truncated from the left side is not defined in any simulation software. Estimation of the expected life of used devices needs left-sided truncated Gaussian distribution. Additionally, very few works examine generating random numbers from left-sided truncated Gaussian distribution. A high accuracy mathematical-based approximation to the left-sided truncated Gaussian cumulative density function is proposed in the current work. Our approximation is built based on Polya's approximation of the Gaussian cumulative density function. The current model is beneficial to approximate the inverse of the left-sided truncated Gaussian cumulative density function to generate random variates, which is necessary for simulation applications. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://scindeks-clanci.ceon.rs/data/pdf/1451-4117/2022/1451-41172202582H.pdf; https://doaj.org/toc/1451-4117; https://doaj.org/toc/1821-3197; https://doaj.org/article/ac1b2ca2402b4f258c7d324d4642ffd3 – Name: DOI Label: DOI Group: ID Data: 10.5937/jaes0-35413 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.5937/jaes0-35413<br />https://doaj.org/article/ac1b2ca2402b4f258c7d324d4642ffd3 – Name: AN Label: Accession Number Group: ID Data: edsbas.FC2E0268 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.FC2E0268 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.5937/jaes0-35413 Languages: – Text: English Subjects: – SubjectFull: gaussian distribution Type: general – SubjectFull: normal distribution Type: general – SubjectFull: random variate generation Type: general – SubjectFull: cumulative density function Type: general – SubjectFull: mathematical approximation Type: general – SubjectFull: truncated normal distribution Type: general – SubjectFull: Technology Type: general – SubjectFull: Engineering (General). Civil engineering (General) Type: general – SubjectFull: TA1-2040 Type: general Titles: – TitleFull: An approximation to the inverse of left-sided truncated gaussian cumulative normal density function using Polya's model to generate random variates for simulation applications Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Hamasha Mohammad M. – PersonEntity: Name: NameFull: Ahmed Abdulaziz – PersonEntity: Name: NameFull: Ali Haneen – PersonEntity: Name: NameFull: Hamasha Sa'd – PersonEntity: Name: NameFull: Aqlan Faisal IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2022 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: Istrazivanja i projektovanja za privredu Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science