Commercial wind turbines modeling using single and composite cumulative probability density functions

Gespeichert in:
Bibliographische Detailangaben
Titel: Commercial wind turbines modeling using single and composite cumulative probability density functions
Autoren: Othman A. M. Omar, Hamdy M. Ahmed, Reda A. Elbarkouky
Verlagsinformationen: Zenodo
Publikationsjahr: 2021
Bestand: Zenodo
Schlagwörter: Cumulative probability density functions, Mathematical modelling, Power curves, Wind turbines
Beschreibung: As wind turbines more widely used with newer manufactured types and larger electrical power scales, a brief mathematical modelling for these wind turbines operating power curves is needed for optimal site matching selections. In this paper, 24 commercial wind turbines with different ratings and different manufactures are modelled using single cumulative probability density functions modelling equations. A new mean of a composite cumulative probability density function is used for better modelling accuracy. Invasive weed optimization algorithm is used to estimate different models designing parameters. The best cumulative density function model for each wind turbine is reached through comparing the RMSE of each model. Results showed that Weibull-Gamma composite is the best modelling technique for 37.5% of the reached results.
Publikationsart: article in journal/newspaper
Sprache: unknown
Relation: https://zenodo.org/records/4629323; oai:zenodo.org:4629323
DOI: 10.11591/ijece.v11i1.pp47-56
Verfügbarkeit: https://doi.org/10.11591/ijece.v11i1.pp47-56
https://zenodo.org/records/4629323
Rights: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
Dokumentencode: edsbas.FC135690
Datenbank: BASE