Commercial wind turbines modeling using single and composite cumulative probability density functions
Uloženo v:
| Název: | Commercial wind turbines modeling using single and composite cumulative probability density functions |
|---|---|
| Autoři: | Othman A. M. Omar, Hamdy M. Ahmed, Reda A. Elbarkouky |
| Informace o vydavateli: | Zenodo |
| Rok vydání: | 2021 |
| Sbírka: | Zenodo |
| Témata: | Cumulative probability density functions, Mathematical modelling, Power curves, Wind turbines |
| Popis: | As wind turbines more widely used with newer manufactured types and larger electrical power scales, a brief mathematical modelling for these wind turbines operating power curves is needed for optimal site matching selections. In this paper, 24 commercial wind turbines with different ratings and different manufactures are modelled using single cumulative probability density functions modelling equations. A new mean of a composite cumulative probability density function is used for better modelling accuracy. Invasive weed optimization algorithm is used to estimate different models designing parameters. The best cumulative density function model for each wind turbine is reached through comparing the RMSE of each model. Results showed that Weibull-Gamma composite is the best modelling technique for 37.5% of the reached results. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | unknown |
| Relation: | https://zenodo.org/records/4629323; oai:zenodo.org:4629323 |
| DOI: | 10.11591/ijece.v11i1.pp47-56 |
| Dostupnost: | https://doi.org/10.11591/ijece.v11i1.pp47-56 https://zenodo.org/records/4629323 |
| Rights: | Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode |
| Přístupové číslo: | edsbas.FC135690 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.11591/ijece.v11i1.pp47-56# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Omar%20OAM Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.FC135690 RelevancyScore: 919 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 918.9462890625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Commercial wind turbines modeling using single and composite cumulative probability density functions – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Othman+A%2E+M%2E+Omar%22">Othman A. M. Omar</searchLink><br /><searchLink fieldCode="AR" term="%22Hamdy+M%2E+Ahmed%22">Hamdy M. Ahmed</searchLink><br /><searchLink fieldCode="AR" term="%22Reda+A%2E+Elbarkouky%22">Reda A. Elbarkouky</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Zenodo – Name: DatePubCY Label: Publication Year Group: Date Data: 2021 – Name: Subset Label: Collection Group: HoldingsInfo Data: Zenodo – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Cumulative+probability+density+functions%22">Cumulative probability density functions</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+modelling%22">Mathematical modelling</searchLink><br /><searchLink fieldCode="DE" term="%22Power+curves%22">Power curves</searchLink><br /><searchLink fieldCode="DE" term="%22Wind+turbines%22">Wind turbines</searchLink> – Name: Abstract Label: Description Group: Ab Data: As wind turbines more widely used with newer manufactured types and larger electrical power scales, a brief mathematical modelling for these wind turbines operating power curves is needed for optimal site matching selections. In this paper, 24 commercial wind turbines with different ratings and different manufactures are modelled using single cumulative probability density functions modelling equations. A new mean of a composite cumulative probability density function is used for better modelling accuracy. Invasive weed optimization algorithm is used to estimate different models designing parameters. The best cumulative density function model for each wind turbine is reached through comparing the RMSE of each model. Results showed that Weibull-Gamma composite is the best modelling technique for 37.5% of the reached results. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://zenodo.org/records/4629323; oai:zenodo.org:4629323 – Name: DOI Label: DOI Group: ID Data: 10.11591/ijece.v11i1.pp47-56 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.11591/ijece.v11i1.pp47-56<br />https://zenodo.org/records/4629323 – Name: Copyright Label: Rights Group: Cpyrght Data: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode – Name: AN Label: Accession Number Group: ID Data: edsbas.FC135690 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.FC135690 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.11591/ijece.v11i1.pp47-56 Languages: – Text: unknown Subjects: – SubjectFull: Cumulative probability density functions Type: general – SubjectFull: Mathematical modelling Type: general – SubjectFull: Power curves Type: general – SubjectFull: Wind turbines Type: general Titles: – TitleFull: Commercial wind turbines modeling using single and composite cumulative probability density functions Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Othman A. M. Omar – PersonEntity: Name: NameFull: Hamdy M. Ahmed – PersonEntity: Name: NameFull: Reda A. Elbarkouky IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2021 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science