Shot Boundary Detection with 3D Depthwise Convolutions and Visual Attention
Uloženo v:
| Název: | Shot Boundary Detection with 3D Depthwise Convolutions and Visual Attention |
|---|---|
| Autoři: | Esteve Brotons, Miguel José, Lucendo, Francisco Javier, Rodríguez Juan, Javier, Garcia-Rodriguez, Jose |
| Přispěvatelé: | Universidad de Alicante. Departamento de Tecnología Informática y Computación, Arquitecturas Inteligentes Aplicadas (AIA) |
| Informace o vydavateli: | MDPI |
| Rok vydání: | 2023 |
| Sbírka: | RUA - Repositorio Institucional de la Universidad de Alicante |
| Témata: | Shot boundary detection, 3D convolution, Depthwise convolution, Visual attention |
| Popis: | Shot boundary detection is the process of identifying and locating the boundaries between individual shots in a video sequence. A shot is a continuous sequence of frames that are captured by a single camera, without any cuts or edits. Recent investigations have shown the effectiveness of the use of 3D convolutional networks to solve this task due to its high capacity to extract spatiotemporal features of the video and determine in which frame a transition or shot change occurs. When this task is used as part of a scene segmentation use case with the aim of improving the experience of viewing content from streaming platforms, the speed of segmentation is very important for live and near-live use cases such as start-over. The problem with models based on 3D convolutions is the large number of parameters that they entail. Standard 3D convolutions impose much higher CPU and memory requirements than do the same 2D operations. In this paper, we rely on depthwise separable convolutions to address the problem but with a scheme that significantly reduces the number of parameters. To compensate for the slight loss of performance, we analyze and propose the use of visual self-attention as a mechanism of improvement. ; We would like to thank “A way of making Europe” European Regional Development Fund (ERDF) and MCIN/AEI/10.13039/501100011033 for supporting this work under the TED2021-130890B (CHAN-TWIN) research project funded by MCIN/AEI /10.13039 /501100011033 and European Union NextGenerationEU/ PRTR. Additionally, the HORIZON-MSCA-2021-SE-0 action number: 101086387, REMARKABLE, Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | English |
| Relation: | https://doi.org/10.3390/s23167022; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130890B-C21; info:eu-repo/grantAgreement/EC/HE/101086387; http://hdl.handle.net/10045/136718 |
| DOI: | 10.3390/s23167022 |
| Dostupnost: | http://hdl.handle.net/10045/136718 https://doi.org/10.3390/s23167022 |
| Rights: | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). ; info:eu-repo/semantics/openAccess |
| Přístupové číslo: | edsbas.FBD6441D |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://hdl.handle.net/10045/136718# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Brotons%20E Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.FBD6441D RelevancyScore: 944 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 943.653564453125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Shot Boundary Detection with 3D Depthwise Convolutions and Visual Attention – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Esteve+Brotons%2C+Miguel+José%22">Esteve Brotons, Miguel José</searchLink><br /><searchLink fieldCode="AR" term="%22Lucendo%2C+Francisco+Javier%22">Lucendo, Francisco Javier</searchLink><br /><searchLink fieldCode="AR" term="%22Rodríguez+Juan%2C+Javier%22">Rodríguez Juan, Javier</searchLink><br /><searchLink fieldCode="AR" term="%22Garcia-Rodriguez%2C+Jose%22">Garcia-Rodriguez, Jose</searchLink> – Name: Author Label: Contributors Group: Au Data: Universidad de Alicante. Departamento de Tecnología Informática y Computación<br />Arquitecturas Inteligentes Aplicadas (AIA) – Name: Publisher Label: Publisher Information Group: PubInfo Data: MDPI – Name: DatePubCY Label: Publication Year Group: Date Data: 2023 – Name: Subset Label: Collection Group: HoldingsInfo Data: RUA - Repositorio Institucional de la Universidad de Alicante – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Shot+boundary+detection%22">Shot boundary detection</searchLink><br /><searchLink fieldCode="DE" term="%223D+convolution%22">3D convolution</searchLink><br /><searchLink fieldCode="DE" term="%22Depthwise+convolution%22">Depthwise convolution</searchLink><br /><searchLink fieldCode="DE" term="%22Visual+attention%22">Visual attention</searchLink> – Name: Abstract Label: Description Group: Ab Data: Shot boundary detection is the process of identifying and locating the boundaries between individual shots in a video sequence. A shot is a continuous sequence of frames that are captured by a single camera, without any cuts or edits. Recent investigations have shown the effectiveness of the use of 3D convolutional networks to solve this task due to its high capacity to extract spatiotemporal features of the video and determine in which frame a transition or shot change occurs. When this task is used as part of a scene segmentation use case with the aim of improving the experience of viewing content from streaming platforms, the speed of segmentation is very important for live and near-live use cases such as start-over. The problem with models based on 3D convolutions is the large number of parameters that they entail. Standard 3D convolutions impose much higher CPU and memory requirements than do the same 2D operations. In this paper, we rely on depthwise separable convolutions to address the problem but with a scheme that significantly reduces the number of parameters. To compensate for the slight loss of performance, we analyze and propose the use of visual self-attention as a mechanism of improvement. ; We would like to thank “A way of making Europe” European Regional Development Fund (ERDF) and MCIN/AEI/10.13039/501100011033 for supporting this work under the TED2021-130890B (CHAN-TWIN) research project funded by MCIN/AEI /10.13039 /501100011033 and European Union NextGenerationEU/ PRTR. Additionally, the HORIZON-MSCA-2021-SE-0 action number: 101086387, REMARKABLE, Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doi.org/10.3390/s23167022; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130890B-C21; info:eu-repo/grantAgreement/EC/HE/101086387; http://hdl.handle.net/10045/136718 – Name: DOI Label: DOI Group: ID Data: 10.3390/s23167022 – Name: URL Label: Availability Group: URL Data: http://hdl.handle.net/10045/136718<br />https://doi.org/10.3390/s23167022 – Name: Copyright Label: Rights Group: Cpyrght Data: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). ; info:eu-repo/semantics/openAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.FBD6441D |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.FBD6441D |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/s23167022 Languages: – Text: English Subjects: – SubjectFull: Shot boundary detection Type: general – SubjectFull: 3D convolution Type: general – SubjectFull: Depthwise convolution Type: general – SubjectFull: Visual attention Type: general Titles: – TitleFull: Shot Boundary Detection with 3D Depthwise Convolutions and Visual Attention Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Esteve Brotons, Miguel José – PersonEntity: Name: NameFull: Lucendo, Francisco Javier – PersonEntity: Name: NameFull: Rodríguez Juan, Javier – PersonEntity: Name: NameFull: Garcia-Rodriguez, Jose – PersonEntity: Name: NameFull: Universidad de Alicante. Departamento de Tecnología Informática y Computación – PersonEntity: Name: NameFull: Arquitecturas Inteligentes Aplicadas (AIA) IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science