Three-Dimensional Path Planning of UAV Based on Improved Particle Swarm Optimization
Uloženo v:
| Název: | Three-Dimensional Path Planning of UAV Based on Improved Particle Swarm Optimization |
|---|---|
| Autoři: | Lixia Deng, Huanyu Chen, Xiaoyiqun Zhang, Haiying Liu |
| Zdroj: | Mathematics ; Volume 11 ; Issue 9 ; Pages: 1987 |
| Informace o vydavateli: | Multidisciplinary Digital Publishing Institute |
| Rok vydání: | 2023 |
| Sbírka: | MDPI Open Access Publishing |
| Témata: | particle swarm algorithm, UAV, 3D path planning, SHADE algorithm |
| Popis: | The traditional particle swarm optimization algorithm is fast and efficient, but it is easy to fall into a local optimum. An improved PSO algorithm is proposed and applied in 3D path planning of UAV to solve the problem. Improvement methods are described as follows: combining PSO algorithm with genetic algorithm (GA), setting dynamic inertia weight, adding sigmoid function to improve the crossover and mutation probability of genetic algorithm, and changing the selection method. The simulation results show that the improved PSO algorithm solves better route results and is faster and more stable. |
| Druh dokumentu: | text |
| Popis souboru: | application/pdf |
| Jazyk: | English |
| Relation: | C2: Dynamical Systems; https://dx.doi.org/10.3390/math11091987 |
| DOI: | 10.3390/math11091987 |
| Dostupnost: | https://doi.org/10.3390/math11091987 |
| Rights: | https://creativecommons.org/licenses/by/4.0/ |
| Přístupové číslo: | edsbas.EE1BE8C2 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.3390/math11091987# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Deng%20L Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.EE1BE8C2 RelevancyScore: 939 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 938.929138183594 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Three-Dimensional Path Planning of UAV Based on Improved Particle Swarm Optimization – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Lixia+Deng%22">Lixia Deng</searchLink><br /><searchLink fieldCode="AR" term="%22Huanyu+Chen%22">Huanyu Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Xiaoyiqun+Zhang%22">Xiaoyiqun Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Haiying+Liu%22">Haiying Liu</searchLink> – Name: TitleSource Label: Source Group: Src Data: Mathematics ; Volume 11 ; Issue 9 ; Pages: 1987 – Name: Publisher Label: Publisher Information Group: PubInfo Data: Multidisciplinary Digital Publishing Institute – Name: DatePubCY Label: Publication Year Group: Date Data: 2023 – Name: Subset Label: Collection Group: HoldingsInfo Data: MDPI Open Access Publishing – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22particle+swarm+algorithm%22">particle swarm algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22UAV%22">UAV</searchLink><br /><searchLink fieldCode="DE" term="%223D+path+planning%22">3D path planning</searchLink><br /><searchLink fieldCode="DE" term="%22SHADE+algorithm%22">SHADE algorithm</searchLink> – Name: Abstract Label: Description Group: Ab Data: The traditional particle swarm optimization algorithm is fast and efficient, but it is easy to fall into a local optimum. An improved PSO algorithm is proposed and applied in 3D path planning of UAV to solve the problem. Improvement methods are described as follows: combining PSO algorithm with genetic algorithm (GA), setting dynamic inertia weight, adding sigmoid function to improve the crossover and mutation probability of genetic algorithm, and changing the selection method. The simulation results show that the improved PSO algorithm solves better route results and is faster and more stable. – Name: TypeDocument Label: Document Type Group: TypDoc Data: text – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: C2: Dynamical Systems; https://dx.doi.org/10.3390/math11091987 – Name: DOI Label: DOI Group: ID Data: 10.3390/math11091987 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.3390/math11091987 – Name: Copyright Label: Rights Group: Cpyrght Data: https://creativecommons.org/licenses/by/4.0/ – Name: AN Label: Accession Number Group: ID Data: edsbas.EE1BE8C2 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.EE1BE8C2 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/math11091987 Languages: – Text: English Subjects: – SubjectFull: particle swarm algorithm Type: general – SubjectFull: UAV Type: general – SubjectFull: 3D path planning Type: general – SubjectFull: SHADE algorithm Type: general Titles: – TitleFull: Three-Dimensional Path Planning of UAV Based on Improved Particle Swarm Optimization Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Lixia Deng – PersonEntity: Name: NameFull: Huanyu Chen – PersonEntity: Name: NameFull: Xiaoyiqun Zhang – PersonEntity: Name: NameFull: Haiying Liu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: Mathematics ; Volume 11 ; Issue 9 ; Pages: 1987 Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science