An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE

Uloženo v:
Podrobná bibliografie
Název: An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
Autoři: Yingjie Wu, Han Zhang, Lixun Liu, Huanran Tang, Qinrong Dou, Jiong Guo, Fu Li
Zdroj: Energies, Vol 17, Iss 6, p 1499 (2024)
Informace o vydavateli: MDPI AG
Rok vydání: 2024
Sbírka: Directory of Open Access Journals: DOAJ Articles
Témata: preconditioning, JFNK, coloring algorithm, reordering algorithm, incomplete LU factorization, Technology
Popis: Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly affecting its computational efficiency. The key point is how to automatically construct a high-quality preconditioning matrix that can improve the convergence rate and perform the preconditioning matrix factorization efficiently and robustly. A reordering-based ILU(k) preconditioner is proposed to achieve the above objectives. In detail, the finite difference technique combined with the coloring algorithm is utilized to automatically construct a preconditioning matrix with low computational cost . Furthermore, the reordering algorithm is employed for the ILU(k) to reduce the additional non-zero elements and pursue robust computational performance. A 2D LRA neutron steady-state benchmark problem is used to evaluate the performance of the proposed preconditioning technique, and a steady-state neutron diffusion k-eigenvalue problem with thermal-hydraulic feedback is also utilized as a supplement. The results show that coloring algorithms can automatically and efficiently construct the preconditioning matrix. The computational efficiency of the FDP with coloring could be about 60 times higher than that of the preconditioner without the coloring algorithm. The reordering-based ILU(k) preconditioner shows excellent robustness, avoiding the effect of the fill-in level k choice in incomplete LU factorization. Moreover, its performances under different fill-in levels are comparable to the optimal computational cost with natural ordering.
Druh dokumentu: article in journal/newspaper
Jazyk: English
Relation: https://www.mdpi.com/1996-1073/17/6/1499; https://doaj.org/toc/1996-1073; https://doaj.org/article/4e075d27f2474547bcaf3f851040e811
DOI: 10.3390/en17061499
Dostupnost: https://doi.org/10.3390/en17061499
https://doaj.org/article/4e075d27f2474547bcaf3f851040e811
Přístupové číslo: edsbas.EC6EDA92
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.3390/en17061499#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Wu%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.EC6EDA92
RelevancyScore: 969
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 968.605590820313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yingjie+Wu%22">Yingjie Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Han+Zhang%22">Han Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Lixun+Liu%22">Lixun Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Huanran+Tang%22">Huanran Tang</searchLink><br /><searchLink fieldCode="AR" term="%22Qinrong+Dou%22">Qinrong Dou</searchLink><br /><searchLink fieldCode="AR" term="%22Jiong+Guo%22">Jiong Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Fu+Li%22">Fu Li</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Energies, Vol 17, Iss 6, p 1499 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Directory of Open Access Journals: DOAJ Articles
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22preconditioning%22">preconditioning</searchLink><br /><searchLink fieldCode="DE" term="%22JFNK%22">JFNK</searchLink><br /><searchLink fieldCode="DE" term="%22coloring+algorithm%22">coloring algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22reordering+algorithm%22">reordering algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22incomplete+LU+factorization%22">incomplete LU factorization</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly affecting its computational efficiency. The key point is how to automatically construct a high-quality preconditioning matrix that can improve the convergence rate and perform the preconditioning matrix factorization efficiently and robustly. A reordering-based ILU(k) preconditioner is proposed to achieve the above objectives. In detail, the finite difference technique combined with the coloring algorithm is utilized to automatically construct a preconditioning matrix with low computational cost . Furthermore, the reordering algorithm is employed for the ILU(k) to reduce the additional non-zero elements and pursue robust computational performance. A 2D LRA neutron steady-state benchmark problem is used to evaluate the performance of the proposed preconditioning technique, and a steady-state neutron diffusion k-eigenvalue problem with thermal-hydraulic feedback is also utilized as a supplement. The results show that coloring algorithms can automatically and efficiently construct the preconditioning matrix. The computational efficiency of the FDP with coloring could be about 60 times higher than that of the preconditioner without the coloring algorithm. The reordering-based ILU(k) preconditioner shows excellent robustness, avoiding the effect of the fill-in level k choice in incomplete LU factorization. Moreover, its performances under different fill-in levels are comparable to the optimal computational cost with natural ordering.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/1996-1073/17/6/1499; https://doaj.org/toc/1996-1073; https://doaj.org/article/4e075d27f2474547bcaf3f851040e811
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/en17061499
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.3390/en17061499<br />https://doaj.org/article/4e075d27f2474547bcaf3f851040e811
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.EC6EDA92
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.EC6EDA92
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/en17061499
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: preconditioning
        Type: general
      – SubjectFull: JFNK
        Type: general
      – SubjectFull: coloring algorithm
        Type: general
      – SubjectFull: reordering algorithm
        Type: general
      – SubjectFull: incomplete LU factorization
        Type: general
      – SubjectFull: Technology
        Type: general
    Titles:
      – TitleFull: An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yingjie Wu
      – PersonEntity:
          Name:
            NameFull: Han Zhang
      – PersonEntity:
          Name:
            NameFull: Lixun Liu
      – PersonEntity:
          Name:
            NameFull: Huanran Tang
      – PersonEntity:
          Name:
            NameFull: Qinrong Dou
      – PersonEntity:
          Name:
            NameFull: Jiong Guo
      – PersonEntity:
          Name:
            NameFull: Fu Li
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Energies, Vol 17, Iss 6, p 1499 (2024
              Type: main
ResultId 1