Contribution to the forecast skill of meteorological and air pollution numerical predictions at mesoscale and urban scale with post-processing algorithms ; Συμβολή στην προγνωστική ικανότητα των μετεωρολογικών και ατμοσφαιρικών αριθμητικών προβλέψεων σε μέση και αστική κλίμακα με αλγόριθμους μετα-επεξεργασίας

Gespeichert in:
Bibliographische Detailangaben
Titel: Contribution to the forecast skill of meteorological and air pollution numerical predictions at mesoscale and urban scale with post-processing algorithms ; Συμβολή στην προγνωστική ικανότητα των μετεωρολογικών και ατμοσφαιρικών αριθμητικών προβλέψεων σε μέση και αστική κλίμακα με αλγόριθμους μετα-επεξεργασίας
Autoren: Pappa, Areti, Παππά, Αρετή
Verlagsinformationen: University of Patras
Πανεπιστήμιο Πατρών
Publikationsjahr: 2024
Bestand: National Archive of PhD Theses (National Documentation Centre Greece)
Schlagwörter: Αριθμητική πρόγνωση καιρού, Δίκτυα μακράς-βραχείας μνήμης, Αλγόριθμοι μετα-επεξεργασίας, Αέρια ρύπανση, Numerical weather prediction, Long short-term memory networks, Post-processing algorithms, Air pollution, Φυσική, Φυσικές Επιστήμες, Εφαρμοσμένη φυσική, Μαθηματικά, Μοντελοποίηση και Προσομοίωση, Physical Sciences, Natural Sciences, Applied Physics, Mathematics, Modeling and Simulation
Beschreibung: Significant scientific and technological breakthroughs in the last century have enabled the quantification of uncertainty in unstable nonlinear dynamic systems, such as the atmosphere. Complex atmospheric processes, including atmospheric dynamics, energy transfers, and chemical reactions have been successfully simulated by Numerical Weather Prediction (NWP) models. The ability of these models to accurately represent phenomena across a diverse range of scales, from the microscale to the global scale, has established them as a fundamental component in atmospheric studies. Their pivotal role has, in turn, spurred an increased focus in scientific research on enhancing the accuracy of numerical forecasts. This entails refining NWP models for a more precise representation of atmospheric processes and applying advanced statistical methods to improve model outputs. This dual approach - advancing model sophistication while also developing robust statistical techniques - has been instrumental in elevating the precision and reliability of weather forecasting. The subject of this dissertation focuses on developing and assessing advanced statistical techniques aimed at enhancing the accuracy of weather and air quality numerical predictions. These approaches aim to tackle the inherent uncertainties in weather and air quality modeling by correcting errors in NWP outputs, showcasing a comprehensive methodology for improving forecasting in these vital domains. As a preliminary step, a comprehensive assessment is carried out to evaluate the accuracy and effectiveness of the numerical weather and air quality predictions. This is followed by an analysis of how inaccuracies in meteorological forecasts impact air quality forecasting. The study culminates in the employment of state-of-the-art statistical methods. These include post-processing filters, analytically optimized multi-model ensemble techniques, and the generation of neural networks, all aimed at enhancing the accuracy of numerical predictions. The versatility of these ...
Publikationsart: doctoral or postdoctoral thesis
Sprache: English
Relation: https://hdl.handle.net/10442/hedi/56805
DOI: 10.12681/eadd/56805
Verfügbarkeit: https://hdl.handle.net/10442/hedi/56805
https://doi.org/10.12681/eadd/56805
Dokumentencode: edsbas.EB24CFDD
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://hdl.handle.net/10442/hedi/56805#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Pappa%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.EB24CFDD
RelevancyScore: 821
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 820.605651855469
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Contribution to the forecast skill of meteorological and air pollution numerical predictions at mesoscale and urban scale with post-processing algorithms ; Συμβολή στην προγνωστική ικανότητα των μετεωρολογικών και ατμοσφαιρικών αριθμητικών προβλέψεων σε μέση και αστική κλίμακα με αλγόριθμους μετα-επεξεργασίας
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Pappa%2C+Areti%22">Pappa, Areti</searchLink><br /><searchLink fieldCode="AR" term="%22Παππά%2C+Αρετή%22">Παππά, Αρετή</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: University of Patras<br />Πανεπιστήμιο Πατρών
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: National Archive of PhD Theses (National Documentation Centre Greece)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Αριθμητική+πρόγνωση+καιρού%22">Αριθμητική πρόγνωση καιρού</searchLink><br /><searchLink fieldCode="DE" term="%22Δίκτυα+μακράς-βραχείας+μνήμης%22">Δίκτυα μακράς-βραχείας μνήμης</searchLink><br /><searchLink fieldCode="DE" term="%22Αλγόριθμοι+μετα-επεξεργασίας%22">Αλγόριθμοι μετα-επεξεργασίας</searchLink><br /><searchLink fieldCode="DE" term="%22Αέρια+ρύπανση%22">Αέρια ρύπανση</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+weather+prediction%22">Numerical weather prediction</searchLink><br /><searchLink fieldCode="DE" term="%22Long+short-term+memory+networks%22">Long short-term memory networks</searchLink><br /><searchLink fieldCode="DE" term="%22Post-processing+algorithms%22">Post-processing algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Air+pollution%22">Air pollution</searchLink><br /><searchLink fieldCode="DE" term="%22Φυσική%22">Φυσική</searchLink><br /><searchLink fieldCode="DE" term="%22Φυσικές+Επιστήμες%22">Φυσικές Επιστήμες</searchLink><br /><searchLink fieldCode="DE" term="%22Εφαρμοσμένη+φυσική%22">Εφαρμοσμένη φυσική</searchLink><br /><searchLink fieldCode="DE" term="%22Μαθηματικά%22">Μαθηματικά</searchLink><br /><searchLink fieldCode="DE" term="%22Μοντελοποίηση+και+Προσομοίωση%22">Μοντελοποίηση και Προσομοίωση</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Sciences%22">Physical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Sciences%22">Natural Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+Physics%22">Applied Physics</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Modeling+and+Simulation%22">Modeling and Simulation</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Significant scientific and technological breakthroughs in the last century have enabled the quantification of uncertainty in unstable nonlinear dynamic systems, such as the atmosphere. Complex atmospheric processes, including atmospheric dynamics, energy transfers, and chemical reactions have been successfully simulated by Numerical Weather Prediction (NWP) models. The ability of these models to accurately represent phenomena across a diverse range of scales, from the microscale to the global scale, has established them as a fundamental component in atmospheric studies. Their pivotal role has, in turn, spurred an increased focus in scientific research on enhancing the accuracy of numerical forecasts. This entails refining NWP models for a more precise representation of atmospheric processes and applying advanced statistical methods to improve model outputs. This dual approach - advancing model sophistication while also developing robust statistical techniques - has been instrumental in elevating the precision and reliability of weather forecasting. The subject of this dissertation focuses on developing and assessing advanced statistical techniques aimed at enhancing the accuracy of weather and air quality numerical predictions. These approaches aim to tackle the inherent uncertainties in weather and air quality modeling by correcting errors in NWP outputs, showcasing a comprehensive methodology for improving forecasting in these vital domains. As a preliminary step, a comprehensive assessment is carried out to evaluate the accuracy and effectiveness of the numerical weather and air quality predictions. This is followed by an analysis of how inaccuracies in meteorological forecasts impact air quality forecasting. The study culminates in the employment of state-of-the-art statistical methods. These include post-processing filters, analytically optimized multi-model ensemble techniques, and the generation of neural networks, all aimed at enhancing the accuracy of numerical predictions. The versatility of these ...
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: doctoral or postdoctoral thesis
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://hdl.handle.net/10442/hedi/56805
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.12681/eadd/56805
– Name: URL
  Label: Availability
  Group: URL
  Data: https://hdl.handle.net/10442/hedi/56805<br />https://doi.org/10.12681/eadd/56805
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.EB24CFDD
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.EB24CFDD
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.12681/eadd/56805
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Αριθμητική πρόγνωση καιρού
        Type: general
      – SubjectFull: Δίκτυα μακράς-βραχείας μνήμης
        Type: general
      – SubjectFull: Αλγόριθμοι μετα-επεξεργασίας
        Type: general
      – SubjectFull: Αέρια ρύπανση
        Type: general
      – SubjectFull: Numerical weather prediction
        Type: general
      – SubjectFull: Long short-term memory networks
        Type: general
      – SubjectFull: Post-processing algorithms
        Type: general
      – SubjectFull: Air pollution
        Type: general
      – SubjectFull: Φυσική
        Type: general
      – SubjectFull: Φυσικές Επιστήμες
        Type: general
      – SubjectFull: Εφαρμοσμένη φυσική
        Type: general
      – SubjectFull: Μαθηματικά
        Type: general
      – SubjectFull: Μοντελοποίηση και Προσομοίωση
        Type: general
      – SubjectFull: Physical Sciences
        Type: general
      – SubjectFull: Natural Sciences
        Type: general
      – SubjectFull: Applied Physics
        Type: general
      – SubjectFull: Mathematics
        Type: general
      – SubjectFull: Modeling and Simulation
        Type: general
    Titles:
      – TitleFull: Contribution to the forecast skill of meteorological and air pollution numerical predictions at mesoscale and urban scale with post-processing algorithms ; Συμβολή στην προγνωστική ικανότητα των μετεωρολογικών και ατμοσφαιρικών αριθμητικών προβλέψεων σε μέση και αστική κλίμακα με αλγόριθμους μετα-επεξεργασίας
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Pappa, Areti
      – PersonEntity:
          Name:
            NameFull: Παππά, Αρετή
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1