Pointwise periodic maps with quantized first integrals

Saved in:
Bibliographic Details
Title: Pointwise periodic maps with quantized first integrals
Authors: Cima, Anna, Gasull Embid, Armengol, Mañosa Fernández, Víctor, Mañosas, Francesc
Contributors: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Publication Year: 2022
Collection: Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Subject Terms: Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals, Difference equations, Differentiable dynamical systems, Discrete geometry, Periodic points, Pointwise periodic maps, Piecewise linear maps, Quantized first integrals, Regular and uniform tessellations, Equacions en diferències, Sistemes dinàmics diferenciables, Geometria discreta, Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems, Classificació AMS::39 Difference and functional equations::39A Difference equations, Classificació AMS::52 Convex and discrete geometry::52C Discrete geometry
Description: We describe the global dynamics of some pointwise periodic piecewise linear maps in the plane that exhibit interesting dynamic features. For each of these maps we find a first integral. For these integrals the set of values are discrete, thus quantized. Furthermore, the level sets are bounded sets whose interior is formed by a finite number of open tiles of certain regular or uniform tessellations. The action of the maps on each invariant set of tiles is described geometrically ; "The third author acknowledges the group’s research recognition 2017-SGR-388 from AGAUR, Generalitat de Catalunya" ; Peer Reviewed ; Postprint (published version)
Document Type: article in journal/newspaper
File Description: application/pdf
Language: English
Relation: https://www.sciencedirect.com/science/article/pii/S1007570421004469; info:eu-repo/grantAgreement/MINECO/1PE/DPI2016-77407-P; Cima, A. [et al.]. Pointwise periodic maps with quantized first integrals. "Communications in nonlinear science and numerical simulation", Maig 2022, vol. 108, article 106150.; http://hdl.handle.net/2117/361708
DOI: 10.1016/j.cnsns.2021.106150
Availability: http://hdl.handle.net/2117/361708
https://doi.org/10.1016/j.cnsns.2021.106150
Rights: Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/ ; Open Access
Accession Number: edsbas.E8BEFD3C
Database: BASE
Description
Abstract:We describe the global dynamics of some pointwise periodic piecewise linear maps in the plane that exhibit interesting dynamic features. For each of these maps we find a first integral. For these integrals the set of values are discrete, thus quantized. Furthermore, the level sets are bounded sets whose interior is formed by a finite number of open tiles of certain regular or uniform tessellations. The action of the maps on each invariant set of tiles is described geometrically ; "The third author acknowledges the group’s research recognition 2017-SGR-388 from AGAUR, Generalitat de Catalunya" ; Peer Reviewed ; Postprint (published version)
DOI:10.1016/j.cnsns.2021.106150