Topical Event Detection on Twitter

Uloženo v:
Podrobná bibliografie
Název: Topical Event Detection on Twitter
Autoři: Jenny Zhang, Flora Salim
Rok vydání: 2020
Témata: Other information and computing sciences not elsewhere classified, topical event detection, Burst detection, Database Management, Dynamic topic modelling, Topic mutation, Information and Computing Sciences not elsewhere classified
Popis: Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate. Provided link supports the dataset used for this paper.
Druh dokumentu: dataset
Jazyk: unknown
Relation: https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852
DOI: 10.25439/rmt.13121852.v2
Dostupnost: https://doi.org/10.25439/rmt.13121852.v2
https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852
Rights: CC BY-NC 4.0
Přístupové číslo: edsbas.E6EC78CD
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.25439/rmt.13121852.v2#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhang%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.E6EC78CD
RelevancyScore: 827
AccessLevel: 3
PubType:
PubTypeId: unknown
PreciseRelevancyScore: 827.017883300781
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Topical Event Detection on Twitter
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Jenny+Zhang%22">Jenny Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Flora+Salim%22">Flora Salim</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2020
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Other+information+and+computing+sciences+not+elsewhere+classified%22">Other information and computing sciences not elsewhere classified</searchLink><br /><searchLink fieldCode="DE" term="%22topical+event+detection%22">topical event detection</searchLink><br /><searchLink fieldCode="DE" term="%22Burst+detection%22">Burst detection</searchLink><br /><searchLink fieldCode="DE" term="%22Database+Management%22">Database Management</searchLink><br /><searchLink fieldCode="DE" term="%22Dynamic+topic+modelling%22">Dynamic topic modelling</searchLink><br /><searchLink fieldCode="DE" term="%22Topic+mutation%22">Topic mutation</searchLink><br /><searchLink fieldCode="DE" term="%22Information+and+Computing+Sciences+not+elsewhere+classified%22">Information and Computing Sciences not elsewhere classified</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate. Provided link supports the dataset used for this paper.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: dataset
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.25439/rmt.13121852.v2
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.25439/rmt.13121852.v2<br />https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: CC BY-NC 4.0
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.E6EC78CD
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.E6EC78CD
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.25439/rmt.13121852.v2
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Other information and computing sciences not elsewhere classified
        Type: general
      – SubjectFull: topical event detection
        Type: general
      – SubjectFull: Burst detection
        Type: general
      – SubjectFull: Database Management
        Type: general
      – SubjectFull: Dynamic topic modelling
        Type: general
      – SubjectFull: Topic mutation
        Type: general
      – SubjectFull: Information and Computing Sciences not elsewhere classified
        Type: general
    Titles:
      – TitleFull: Topical Event Detection on Twitter
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Jenny Zhang
      – PersonEntity:
          Name:
            NameFull: Flora Salim
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2020
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
ResultId 1