Topical Event Detection on Twitter
Uloženo v:
| Název: | Topical Event Detection on Twitter |
|---|---|
| Autoři: | Jenny Zhang, Flora Salim |
| Rok vydání: | 2020 |
| Témata: | Other information and computing sciences not elsewhere classified, topical event detection, Burst detection, Database Management, Dynamic topic modelling, Topic mutation, Information and Computing Sciences not elsewhere classified |
| Popis: | Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate. Provided link supports the dataset used for this paper. |
| Druh dokumentu: | dataset |
| Jazyk: | unknown |
| Relation: | https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852 |
| DOI: | 10.25439/rmt.13121852.v2 |
| Dostupnost: | https://doi.org/10.25439/rmt.13121852.v2 https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852 |
| Rights: | CC BY-NC 4.0 |
| Přístupové číslo: | edsbas.E6EC78CD |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.25439/rmt.13121852.v2# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zhang%20J Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.E6EC78CD RelevancyScore: 827 AccessLevel: 3 PubType: PubTypeId: unknown PreciseRelevancyScore: 827.017883300781 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Topical Event Detection on Twitter – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Jenny+Zhang%22">Jenny Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Flora+Salim%22">Flora Salim</searchLink> – Name: DatePubCY Label: Publication Year Group: Date Data: 2020 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Other+information+and+computing+sciences+not+elsewhere+classified%22">Other information and computing sciences not elsewhere classified</searchLink><br /><searchLink fieldCode="DE" term="%22topical+event+detection%22">topical event detection</searchLink><br /><searchLink fieldCode="DE" term="%22Burst+detection%22">Burst detection</searchLink><br /><searchLink fieldCode="DE" term="%22Database+Management%22">Database Management</searchLink><br /><searchLink fieldCode="DE" term="%22Dynamic+topic+modelling%22">Dynamic topic modelling</searchLink><br /><searchLink fieldCode="DE" term="%22Topic+mutation%22">Topic mutation</searchLink><br /><searchLink fieldCode="DE" term="%22Information+and+Computing+Sciences+not+elsewhere+classified%22">Information and Computing Sciences not elsewhere classified</searchLink> – Name: Abstract Label: Description Group: Ab Data: Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate. Provided link supports the dataset used for this paper. – Name: TypeDocument Label: Document Type Group: TypDoc Data: dataset – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852 – Name: DOI Label: DOI Group: ID Data: 10.25439/rmt.13121852.v2 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.25439/rmt.13121852.v2<br />https://figshare.com/articles/dataset/Topical_Event_Detection_on_Twitter/13121852 – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY-NC 4.0 – Name: AN Label: Accession Number Group: ID Data: edsbas.E6EC78CD |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.E6EC78CD |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.25439/rmt.13121852.v2 Languages: – Text: unknown Subjects: – SubjectFull: Other information and computing sciences not elsewhere classified Type: general – SubjectFull: topical event detection Type: general – SubjectFull: Burst detection Type: general – SubjectFull: Database Management Type: general – SubjectFull: Dynamic topic modelling Type: general – SubjectFull: Topic mutation Type: general – SubjectFull: Information and Computing Sciences not elsewhere classified Type: general Titles: – TitleFull: Topical Event Detection on Twitter Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Jenny Zhang – PersonEntity: Name: NameFull: Flora Salim IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2020 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science